a2 United States Patent

Erickson et al.

US009326307B2

US 9,326,307 B2
*Apr. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

EFFICIENT COMMUNICATION FOR
DEVICES OF A HOME NETWORK

Applicant: Google, Inc., Mountain View, CA (US)

Inventors: Grant M. Erickson, Sunnyvale, CA
(US); Jay D. Logue, San Jose, CA (US);
Christopher J. Boross, San Francisco,
CA (US); Zachary B. Smith, San
Francisco, CA (US); Osborne B.
Hardison, Palo Alto, CA (US); Richard
J. Schultz, Mountain View, CA (US);
Sunny P. Gujjaru, Sunnyvale, CA (US);
Matthew G. Neeley, San Mateo, CA

(US)
Assignee: Google Inc., Mountain View, CA (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/712,436

Filed: May 14, 2015

Prior Publication Data

US 2015/0249728 Al Sep. 3, 2015

Related U.S. Application Data

Continuation of application No. 13/926,335, filed on
Jun. 25, 2013.

Int. Cl.
HO04W 4/00 (2009.01)
HO4W 76/02 (2009.01)
(Continued)
U.S. CL
CPC ... HO04W 76/023 (2013.01); HO4L 9/0861

(2013.01); HO4L 9/32 (2013.01); HO4L 9/3247

(2013.01); HO4L 9/3263 (2013.01); HO4L
9/3265 (2013.01); HO4L 12/2803 (2013.01);
HO4L 12/2814 (2013.01); HO4L 12/2823
(2013.01); HO4L 45/00 (2013.01); HO4L 45/74
(2013.01); HO4L 49/254 (2013.01); HO4L
61/00 (2013.01); HO4L 61/6059 (2013.01);

(Continued)

Field of Classification Search

CPC HO4L 69/165; HO4L 67/10
USPC 370/252, 254, 465-467
See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

6,101,188 A 8/2000 Sekine et al.
6,101,545 A 8/2000 Balcerowski et al.
(Continued)
OTHER PUBLICATIONS

PCT Invitation to Pay Additional Fees/Partial International Search
Report, mailed Sep. 30, 2014, 7 pages.
(Continued)

Primary Examiner — Farah Faroul
(74) Attorney, Agent, or Firm — Wolfe-SBMC

(57) ABSTRACT

Systems and methods are provided for efficient communica-
tion through a fabric network of devices in a home environ-
ment or similar environment. For example, an electronic
device may efficiently control communication to balance
power and reliability concerns, may efficiently communicate
messages to certain preferred networks by analyzing Internet
Protocol version 6 (IPv6) packet headers that use an Extended
Unique Local Address (EULA), may efficiently communi-
cate software updates and status reports throughout a fabric
network, and/or may easily and efficiently join a fabric net-
work.

45 Claims, 38 Drawing Sheets

48+ 5 ff 3 6 € f@&
T
i 5 (.
we® emiN | w [rm |
Y T
% 56 4]0 5 \58 e g \28

.
34
.
36

NEST/CLOUD

US 9,326,307 B2

Page 2
(51) Int.CL 2007/0083788 Al* 4/2007 Johnson HO4L 12/2697
714/1
gzjgjzzi (5883'81) 2007/0253431 Al 11/2007 Park et al.
(2009.01) 2008/0086727 Al 4/2008 Lam et al.
HO4L 29/08 (2006.01) 2008/0141274 Al 6/2008 Bhogal et al.
HO4L 1228 (2006.01) 2008/0291828 Al* 11/2008 Parkcooooorrovrn. H04L3 ;t(s)ggg
HO4L 12/701 (2013.01) 2008/0304457 Al 12/2008 Thubert et al.
HO4L 29/12 (2006.01) 2009/0016226 Al* 1/2009 LaVigne HO4L 63/1408
HO4L 29/06 (2006.01) 370/241
HO4W 88/02 (2009.01) 200010040105 A1 2000 o al
ansarkar et al.
HO4L 12/937 (2013.01) 2009/0077396 A1* 3/2000 TS woovverrrerreerr GOGF 1/3209
HO4W 4024 (2009.01) 713/310
HO4W 72/04 (2009.01) 2009/0080013 Al 3/2009 Sato et al.
2009/0116463 Al 52009 Hirano et al.
Zg;g;ﬁg (3883'8}) 2009/0185538 Al 7/2009 Choi et al.
(2009.01) 2009/0195072 A1* 82009 Lee wvvrcrrrovonn. HO4L 12/2697
HO4L 9/08 (2006.01) 307/39
H04L 9732 (2006.01) 20000207621 A1 52000 Rama o
une
HO4L 12/741 (2013.01) 2009/0276451 AL* 11/2009 Shelby HO4L 67/2823
HO4W 84/18 (2009.01) 2009/0323690 Al 12/2009 Luetal.
HO4W 88/04 (2009.01) 2010/0064029 Al* 3/2010 Lundberg HO4N 7/183
HO4W 88/06 (2009.01) 2010/0153652 Al 6/2010 Th t al TOoR1
omas et al.
HO4L 12/58 (2006.01) 2010/0232433 Al 9/2010 Morris
HO4L 12/54 (2013.01) 2010/0238811 Al 9/2010 Rune
HO4W 80/04 (2009.01) 2010/0262519 Al 10/2010 Salomon et al.
(52) US.Cl 2010/0262650 Al 10/2010 Chauhan et al.
NS 2010/0281424 Al 11/2010 Vaysburg et al.
CPC HO04L67/10 (2013.01); HO4L 67/12
; 20110066051 Al 3/2011 Moon et al.
(2013.01); HO4L 67/34 (2013.01); HO4L 2011/0099545 Al 4/2011 Leeetal.
69/165 (2013.01); HO4W 24/04 (2013.01); 2011/0107165 Al 5/2011 Resch et al.
HO4W 24/10 (2013.01); HO4W 40/246 2011/0167133 Al 7/2011 Jain
(2013.01); HO4W 52/0212 (2013.01); HO4W %8}};8582222 ﬁ} ;ggﬁ ggﬂgl‘j :tlél
72/0493 (2013.01); HO4W 76/02 (2013.01); 5011/0221590 Al 0/2011 Baker ot al.
HO04W 84/12 (2013.01); HO4W 88/02 2011/0246646 Al 10/2011 Nakhjiri et al.
(2013.01); HO4L 12/28 (2013.01); HO4L 12/56 2011/0275384 Al 11/2011 Barbeau et al.
(2013.01); HO4L 12/58 (2013.01); HO4L 2012/0093508 Al 4/2012 Baykal et al.
61/2038 (2013.01); HO4L 61/6004 (2013.01); 38}%8}28332 Al %83 gﬁjfi‘ o :IL
HO4L 63/0823 (2013.01); HO4W 80/045 2012/0197791 Al 82012 Karner et al.
(2013.01); HO4W 84/18 (2013.01); HO4W 88/04 2012/0207163 Al 8/2012 Schrum
(2013.01); HO4W 88/06 (2013.01) 2012/0233674 Al 9/2012 Gladstone et al.
2012/0236824 Al 9/2012 McCann et al.
. 2012/0264443 Al 10/2012 Ngetal.
(6 References Cited 2012/0320924 AL* 12/2012 Baliga ccoorrrroren HO4L 45/125
370/400
U.S. PATENT DOCUMENTS 2012/0329478 Al 122012 Lee
2013/0006400 Al 1/2013 Caceres et al.
6,484,200 Bl 11;2002 Angfclll et all~ 2013/0036181 Al 2/2013 Choi et al.
7,035,634 B2 4/2006 Mea, etf~ 2013/0046872 Al 2/2013 Seelman
8111414 B2 2/2012 Sato et al. 2013/0046893 Al 2/2013 Hauser et al.
8,301,432 Bl 10/2012 Gauvin 2013/0078985 Al 3/2013 Savolainen et al.
ggé‘g‘zg; gi gggg %hao " 2013/0083726 Al 4/2013 Jain et al.
$235373 Bl 12014 Sogue etal. o 2013/0117449 Al 5/2013 Hares et al.
999, upramaniam et al. 2013/0142059 Al 6/2013 Di Giroiamo et al.
g’g%g% gé ggg}‘s‘ %”_nlifman . 2013/0171939 Al 7/2013 Tian et al.
0036532 B2 /2015 Eiiﬁkiﬁﬁ etal. 2013/0242847 Al* 9/2013 Oh ...ccoovvvvvenrennnn, HO4W 4/22
036, . 370/312
9,124,521 B2 9;2015 Erickson et al. 2013/0326502 Al 12/2013 Brunsman et al.
g’}g?’gég gé 1%8}2 E"_g‘ll(e . 2013/0329605 Al 12/2013 Nakil et al.
0184 y rickson et al. 2014/0003357 Al 1/2014 Ejzak et al.
%885/8%‘5‘%22 ﬁ} 1%885 Egi‘c’lswo " 2014/0004825 Al 1/2014 Prakash et al.
2004/0031030 Al 2/2004 Kidder et al. %8}3;88332% ﬁ} %8}3 Eiejézlt al
2004/0225885 Al 11/2004 Grohoski et al. g '
2005/0018632 Al 12005 Lee et al 2014/0108624 Al 4/2014 Grundemann et al.
. *
2005/0135570 AL* 6/2005 Binning HO4L 12/2803 2014/0120861 AL* 5/2014 RWak .oooooies H(214SI;I/411(9)£18?
379/45 :
2014/0181893 Al 6/2014 Von Bokern et al.
2006/0010217 Al 1/2006 Sood
2006/0067360 Al 3/2006 Ohara 2014/0233460 Al* 82014 Pettuscoooooorrrorren HO4Q 1/15
2006/0259969 Al 11/2006 Suh et al. . 370/328
2007/0054674 Al 3/2007 Cohen et al. 2014/0240105 Al 8/2014 Brenner GO8B 25/00
2007/0076684 Al 4/2007 Leecet al. 340/286.02
2007/0078986 Al* 4/2007 Ethier HO4L 65/1069 2014/0241146 Al 82014 Mahadevan et al.
709/227 2014/0247396 Al 9/2014 Ohmae et al.
2007/0081512 Al 4/2007 Takeda et al. 2014/0250509 Al 9/2014 Ansley

US 9,326,307 B2
Page 3

(56)

2014/0256249
2014/0270714
2014/0281804
2014/0282923
2014/0283004

2014/0289745
2014/0328343
2014/0369267
2014/0376405
2014/0376530
2014/0379817
2015/0016407
2015/0019223

2015/0023293
2015/0023294
2015/0023339
2015/0032898
2015/0109902
2015/0249605
2015/0257190

References Cited

U.S. PATENT DOCUMENTS

9/2014
9/2014
9/2014
9/2014
9/2014

9/2014
11/2014
12/2014
12/2014
12/2014
12/2014

1/2015

1/2015

1/2015
1/2015
1/2015
1/2015
4/2015
9/2015
9/2015

Tse et al.
Osminer et al.
Resch

Narayan et al.
Moorecooccee

Nirantar
Kapadia et al.
Ni et al.
Erickson et al.
Erickson et al.
Logue et al.
Erickson et al.
Chenccoovnee

Erickson et al.
Erickson et al.
Erickson et al.
Tan

Kumar
Erickson et al.
Erickson et al.

HO4L 63/0263
726/13

GO6F 17/30746
704/246

OTHER PUBLICATIONS

PCT International Search Report mailed Jan. 20, 2015, 5 pages.
Final Office Action, U.S. Appl. No. 14/506,199, Nov. 5, 2015, 8
pages.

Non-Final Office Action, U.S. Appl. No. 13/926,335, Jan. 27, 2015,
9 pages.

Non-Final Office Action, U.S. Appl. No. 14/506,199, Apr. 24, 2015,
9 pages.

Notice of Allowance, U.S. Appl. No. 13/926,335, Jun. 26, 2015, 8
pages.

Notice of Allowance, U.S. Appl. No. 14/506,199, Jan. 22, 2015, 8
pages.

Notice of Allowance, U.S. Appl. No. 14/506,274, Jan. 21, 2015, 15
pages.

Notice of Allowance, U.S. Appl. No. 14/712,377, Sep. 9, 2015, 8
pages.

Preinterview First Office Action, U.S. Appl. No. 14/506,199, Dec. 2,
2014, 4 pages.

Preinterview First Office Action, U.S. Appl. No. 14/506,274, Dec. 3,
2014, 5 pages.

Preinterview First Office Action, U.S. Appl. No. 14/712,377, Jun. 16,
2015, 4 pages.

Preinterview First Office Action, U.S. Appl. No. 14/712,467, Oct. 2,
2015, 4 pages.

* cited by examiner

U.S. Patent Apr. 26,2016 Sheet 1 of 38 US 9,326,307 B2

flﬁ

2@‘\

PROCESSOR(S)
1~ o~
USER
INTERFACE SENSOR

18'\ 16 \\
NETWORK POWER
INTERFACE SUPPLY

FIG. 1

US 9,326,307 B2

Sheet 2 of 38

Apr. 26,2016

U.S. Patent

\\iwm \}wm
ANO1/ISIN NOLLY DM
Y
TINMTIM e
¢9 HALYIH 1004
S
89 85
08 7 9% 9y
N PO~ N
R e I LT %m\ m
T AW {151}
el I

/77

"

0L

U.S. Patent Apr. 26,2016 Sheet 3 of 38 US 9,326,307 B2

80
NODE : re

&

POOL HEATER | NODE

7
34
NODE
IRRIGATION -—E;sj
52
35/ NODE

8

U.S. Patent Apr. 26,2016 Sheet 4 of 38 US 9,326,307 B2

APPLICATION LAYER 102
PLATFORM LAYER 100
TRANSPORT LAYER 98
NETWORK LAYER 96
DATA LINK LAYER 94
PHYSICAL LAYER G2
oy 102
i
: i
110 ~
LN APPUCATION
: DTLS (WITH CERTIFICATES) LAYER
! 98
§
: ~
» EFFICIENT USER DATAGRAM | TRANSMISSION CONTROL] JRANSPORT
o LOW PROTOCOL PROTOCOL LAYER
| POWER ¢
| WIRELESS :
a NETWORK
| PERSONAL tPvb WITH Ripﬂg LAYER
| NETWORK L |
| ’E‘)
H

"""""""""""""""" FIG. 5 %

U.S. Patent Apr. 26,2016 Sheet 5 of 38 US 9,326,307 B2

120
/

SEND REQUEST FOR ALL ROUTING TABLES —li22

RECEIVE MESSAGE WITH ALL ROUTING TABLES p—124

UPDATE LOCAL ROUTING TABLE 126

FIG. 6

/86

132

FIG. 7A 12

U.S. Patent Apr. 26,2016 Sheet 6 of 38 US 9,326,307 B2
80
142 -
NS 148
ROUTES l‘f’gg (154
— 0 [[=
NZS ‘ ' ROUTES
ROUIES ﬁ \ |
// TANEE W 154
1407 [OUTES) BONIESL W o IROUTES N
OFN N S P 156(7) 4
o/ ROUTES 152 J x| e
144 146 180 7 5o et bl)
w1] 9] o S
144 i) AL T B AOUTES
TR I
ROUTES 158" eourss
156

FIG. /7B

U.S. Patent Apr. 26,2016 Sheet 7 of 38 US 9,326,307 B2

/,wsa
172
DESTNATIONT INTERMEDIATE
NODE HODES
7 0
3 7 |
i 7 i
; 7L ;
R 7)
7 TTRE
7 7458 14
g 245 13
g 2467 1%
9 3458 11
g IR
3 Vi

FIG. 7D

U.S. Patent Apr. 26,2016 Sheet 8 of 38 US 9,326,307 B2

[‘190
TRUSTED 107
MANUFACTURER
/ CERTIFICATE f"‘lgﬂi
DEVICE
CERTIFICATE

FIG. 8

U.S. Patent Apr. 26,2016 Sheet 9 of 38 US 9,326,307 B2

fzas
s ®

{\ ~ /f—zo:@

NODE 1 HELLO)

. NODE 1 HELLO VERIFY REQUEST
NODE 1 HELLO : ‘/"298
J NODE 2 HELLO

202

NODE 2 CERTIFICATE
NODE 2 KEY EXCHANGE
NOGDE 1 CERTIFICATE REQUEST

NODE 1 CERTIFICATE

NODE 1 KEY EXCHANGE
NODE 2 CERTIFICATE VERIFY
[CHANGE CIPHER SPEC] e

21(3-/) ' [CHANGE CIPHER SPEC]

"

214
A
IGROUP-WISE NETWORK KEY |

s o

DTLS SECURED CHANNEL

FIG. 9

U.S. Patent Apr. 26, 2016 Sheet 10 of 38 US 9,326,307 B2

1000 1006

U.S. Patent Apr. 26,2016 Sheet 11 of 38

1078

1086 1084
o7e L WEAVE
FABRIC

\ /SERVICEY, |
e S

™~ 5 | s
weave ~LONT.

FABRIC

DEVICE

US 9,326,307 B2

1074

WEAVE
FABRIC

:

\ A Sl N {CONSUMER |
e S O i-l DEVg {:E

1080

DEVICE

U.S. Patent Apr. 26,2016 Sheet 12 of 38

iﬁg\i
: ,/”1109

ULA (UNIQUE LgCAL ADDRESS)

fliﬁ

US 9,326,307 B2

/«»1104

GLOBAL 1D

SUBNET ID INTERFACE ID

e 40 BITS e 165 BITS] 64 BITS
AY

4

e m N
FABRIC 1D 103

105

\

FIG. 15

ASSIGN VIRTUAL ADDRESS
TO PERIPHERY NODE

—1106

MAINTAIN LIST OF
PERIPHERY NODES

— 1108

MONITOR FOR NEIGHBCR
SOLICITATION MESSAGE OF
VIRTUAL ADDRESS
N LIST

1110

ASSIGN VIRTUAL ADDRESS TO
HUB NETWORK INTERFACE
FOR ROUTING NODE

— 1112

RESEND TO NEIGHBOR
SOLICITATION MESSAGE AND
RECEIVE PACKET

— 1114

REWRITE DESTINATICN
ADDRESS

-~ 1116

FORWARD PACKET

— 1118

FIG. 16

U.S. Patent Apr. 26, 2016 Sheet 13 of 38 US 9,326,307 B2

1120

/—1122 !,,.1124 /,«»1126
TAG LENGTH VALUE

FIG. 17

U.S. Patent Apr. 26, 2016 Sheet 14 of 38 US 9,326,307 B2

GENERAL MESSAGE PROTOCOL

|7 D B it B S S R SR A M e S SR R

2 BYTESilﬁ PACKET LENGTH 0 P-“HBO
Frn o b oo oo ox oon ool oo v e o o oo o o o o e o _J..m.,i...miw ni.,.wi...wn.”&.mmh.ww
2 BYTES|15 MESSAGE HEADER 0 p~li2
31’ 1]) 3] L] H 1)) B 3] I16 ’“‘1134
4 BYTES i~ MESSAGE 1D -
15 H i I 3 X A 11 H]] R 1 1 IO
L A A A e s B S S R R A R R R |
s63 48:
1136
8 RYTES §- SOURCE NODE ID —
L i
115 o
LWén_hmdmm&n“LmemLmdnn&mmhmdnnkmwmmannkmj
| L A R S A A B SR S R i R BN R R
163 483
E T -1138
8 BYTES i DESTINATION NODE ID -
- .
15 :
Fooe oo ok oo 190 S0 200 sodf oo oo B oo 100 b 300 308 poc coc B oo oo 0 adh 300 oo Bax cox Jmmknummdmmhni
" T el et e e e R e i A e T
2 BYTESE:{E}& b o ol EY Toox ox ot anh:i iDu& Roo mo ool B H o &:O :}Fwilq‘(}
““1““?“”“”1““? T yYTTTaATTrTTyTTYTTYTITOYTTTYT T Ty
2 BYTESs}ﬁ . PAYLOAD LENGTH 0 1142
' R S I S A R S S DS R T R HR R B |
a L1144
VARIABLE INTIALIZATION VECTOR -
H
i,?“::":‘,‘5‘.'.':::"::..‘:4';“::":,*E:":.'::“::.3;‘:::"::“:;wﬁ':‘x::'i“::"::a’:.;‘i‘::::’:':‘:.“::“:,°:.'f‘;':.':~‘::,“i1
:] H ¥] H] 1 3 H L] L]] 1] H ";_Mlllia
VARIABLE [+ APPLICATION PAYLOAD —!
H i
:E Tt YT T T T T YT Ty TR Ty T YT ﬂ““T“ﬂ:
1 +-1148
VARIABLE 1 — MESSAGE INTEGRITY CHECK —3!
L
:E,..,.,a....,.,a.,., ol o i o o e o o B wn ek o B e o B] e B o b e e e B 5%1152
|r"W“"T“"""T“"F ;YT T T YTTeETTMITT YT T
o L1150
VARIABLE | — PADDING ~4
[
;:_...J.._mim sof oee o Be oo 1 o 100 2ol o o Hor v i w00 wbh 3 noe v o ol 190 o0 B 30 neelay o ol o fos s E:
F:;::;::::;::;":ﬂ::‘;::;";::;::::;::;‘."fﬂ::;::g
: ;»"‘“11.54
VARIABLE MESSAGE SIGNATURE —
§

ISRV [REREIGS VAU ST NN NOpUUIN [Ny U NG JNUIY RN (SN TSI NI RS M

o FIG. 18

U.S. Patent Apr. 26,2016 Sheet 15 of 38 US 9,326,307 B2

1132
1158 1160
| iff“bﬁ } } | ;/,:1152 | s/,,;mz;
15 VERSION |~ | - | S| D | ENCRIPTION TYPE | SGNATURE TYPE O
e, BYTS ke 4 BTG 4 BTG e - BITS et
1140
1166 1168
ISKEY TYPE12[11 KEYNUMBER 0
o 4 BITS 12 BITS

FIG. 20

U.S. Patent

1146

Apr. 26,2016

Sheet 16 of 38

US 9,326,307 B2

—8 BITS ——8 BITS —f————16 BITS i

0 /-117Q i/~1172 37
VERSION § MSG TYPE EXCHANGE 1D 1174
PROFILE 1D 1176

P T 3
; PROFILE-SPECIFIC HEADERS 1178

b o o ,,§
APPLICATION PAYLQAD SUB-FIELD 1180

FIG. 21

U.S. Patent Apr. 26,2016 Sheet 17 of 38 US 9,326,307 B2

1182

Q ¥ 1 l H H 3 ;}ROHFlLE; H] g H ¥ 115 Mm_llgd
4 BYTES |- -

6 g
2 BYTES{15 STATUSCODE 0186
IBYTE |0 NEXT STATUS 7 1188

A D It S S M S SR A T R N SR S DA B |
VARMBLEL ADDITIONAL STATUS iNFO ~ ~ +=1190
1184

R T

LT N

FIG. 23

U.S. Patent Apr. 26, 2016 Sheet 18 of 38 US 9,326,307 B2

1196

SW_UPDATE | 1108 SW UPDATE
cuEnT | 120077 T SFRviR
— 1:?532 SERVEX

<(L SERVICE DISCOVERY
o

-

IMAGE QUERY 1/’1206

-

IMAGE QUERY RESP(}NSEflﬁﬁéi

1210

(DOWNLOAD

DOWNLOAD NOTIFY [-1212
1214
] NOTIFY RESFONSE 124 |
UPDATE NOTIFY [-1216
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm .-*p»
f 1214
SRR NOTIFY RESPONSE ,22ld |
T N U e
e & :
; @ :
§ i
B & H

U.S. Patent Apr. 26, 2016 Sheet 19 of 38 US 9,326,307 B2

1204
LB [0 FRAME CONTROL 7 —1218
G 3 3] E] K 3 t K 3 3 i 1] 3] 3
BENES | PRODUCT SPECIFICATION s
i k] Il] i 3 L E, i 3 i i 3] 4?
PR S R B S S Sl S A D St B A A R ~
VARUBLE VENDOR SPECIFIC DATA 1222
£ o o A oo cox oo 1 v i 0 2 oo e i s 12 o 200 200 20 e o o 0 1k 30 300 o e e o 2 e o e B o B 0
WAMBE| . VERSION SPECIFICATION [—l1224
PR S R B S S S SR AR R B R AR R
AR LOCALE SPECIFICATION 11226
| QPR S W nJmm.&mu&muhmmlumn&mm.&mmhum‘mmn&mmn&mnﬂumuhmm
2ABMS| INTEGRITY TYPES SUPPORTED |—l1228
25806| UPDATE SCHEMES SUPPORTED. L1230
N FIG. 25
1232 e |
VENDOR SPECFC FLAC | LOCAE PECFONTON FUG| RESERVED 7
1B ——— 1B~ 6 BTS ———
1220
0 FIG. 26
D 3 3 H 5, L] § YEN{)!QR SED 3] 3 3 $ Il5 M1236
16 PRODUCT 1D 31 1238
32 & I 3 I 3 ;PROIDUC‘;; REYESiQﬂN 1]] 1 3 |47 ’M124‘0
1224 FIG. 27
| P | | e
0 VERSON LENGTH 7 VERSION STRING
M | VARABLE—— |
1288 FIG. 28
AN i Vi
0 LOCALE STRING LENGTH 7 " LOCALE STRING
T | VARIABLE———]

FIG. 29

U.S. Patent Apr. 26, 2016 Sheet 20 of 38 US 9,326,307 B2

\ H H i L /’:125!0 i § ! H (125!2 3
G TYPE LIST LENGTH 7 INTEGRITY TYPE LiST

WS BITS | YARIABLE]
FIG. 30

1254 1256
L i 1] /T § H 3 3 t /:“ i 3 ¥
0 SCHEME LIST LENGTH 7 UPBATE SCHEME LIST

e B BITS ’ VARIABLE et

AN

VARABLE| ~ QUERYSTATUS |~1258
T T T T T T T AT T Ty TR ETTI YT RT Ty

o 15 11260

1230

2 BYTES

1260

0 URILENGTH 15 1268
~ URISTRING 1270

FIG. 33

1262

0 mERWYRE 7 p-l272

P o
— INTEGRITY VALUE —

FIG. 34

U.S. Patent

1264

Apr. 26,2016 Sheet 21 of 38 US 9,326,307 B2
| 1276 | /,-12;78 PEgggzaa f,milzg.:z
UPDATE PRIGRTY UPDATE CONDITION e RESERVED
§ 2 BITg =] 3BT bt BT 2 Bg]
lzii
NODE 1286 NODE #1288
1 VIEW REQUEST 50 &.L
1334
. VIEW RESPONSE)
I UPDATE REQUEST)" I
1374

UPDATE RESPONSE

FIG. 36

U.S. Patent Apr. 26, 2016 Sheet 22 of 38 US 9,326,307 B2

1292

2BYTES |0 VEW HANDLE 15|~1294

2BYTES|O . PATH USTLENGTH . 15[~129%

VARIABLE | pATH LST 1298

FIG. 37

FOO PROFILE

ANIMAL:
FISH:
MEDIUM:
SIZE:
FOWL:
MEDIUM:
SIZE: 1300
BICYCLE:
ROAD:
OF GEARS: FIG. 38
SIZE:
WEIGHT:
MOUNTAIN: ~ 1307
OF GEARS:
SIZE:
WEIGHT:
TRACK:
OF GEARS:
SIZE:
WEIGHT:

1304

PROFILE IDENTIFIER -

Fe

L1306
4 BYTES

VARABLE | TIVDATA . |—1308

FIG. 39

U.S. Patent Apr. 26, 2016 Sheet 23 of 38 US 9,326,307 B2

1310
2BVES|O, . . VEW HANDLE 0, |15[~1312
2BYIES|O PATH LSTLENGTH 15{~1314
VARMBLE | |, , , PAM UST 0, [
LBYTE |0 CHANGE COUNT 7 |-1318

1320 FIG. 40

N
2ores [T v bl b
2OYTES |0 PATH LSTLENGTH 1511324
T RS SRR
4 BYTES b UPDATE PERIOD 3?’*1328
130 FIG. 41
2BYTES {0 VEW HANDLE 15

1332 FIG. 42

N
QBVIES {0 . VIEW HANDIE 15

1336 FIG. 43

N
2 oves [T v Tl g
VARIABLE | . VIEW REQUEST STATUS = 1340
VARIABLE |\ DATATEM UST . e1342

[EVFSTF VPRIV SR NNIPCHY: SEFVAIIVE FVQPPAY (F CHFERE TVRFVE: FUUNVOI REVEIPNY SVERVIIVG JNVIIEY NAFRRIFER INVIVAIR SEVIRVRY FREERN,

FIG. 44

U.S. Patent Apr. 26, 2016 Sheet 24 of 38 US 9,326,307 B2

1348

2BYTES [O0 . UPDATEHANDLE . 15(~1348
2BYTES |0 PATH USTLENGTH 15p~1380
N SRR LT SRS
VARABLE | . DATAITEM UsT . |~1354

1356 FiG. 45
Na

2BVES{0, , UPONEWANDIE . 15[1358
2BYES[O, |, , , VIEW HANDLE . 15[1360
2 BYTES {0 UPDATE ITEM LENGTH 15/1362
VARWMBLE | . UPDATETEM LisT . |~1364

FIG. 46

1366

2BYTES|O TEM INDEX . 15/~1368

O] 3 L] L] T L T]] ¥ 1}] T L i ".’1370

4 BYTES HEM TIMESTAMP —

VARMBLE| g:}mp; n‘émj R =

1376 HG 4?

VeS| |, , UPDATEWANDLE L [T
VARABLE | UPDATE REQUEST STATUS —1380

FIG. 48

U.S. Patent Apr. 26,2016 Sheet 25 of 38 US 9,326,307 B2

1400

1402 1004 1406
SENDER RECEIVER
1408

FIG. 49

U.S. Patent Apr. 26, 2016 Sheet 26 of 38 US 9,326,307 B2

]
B Al kT Tl I R B A e e N L

1420
1422 1424
2 BYTES | 0 TRANSFER CONTROL 7|8 RANGE CONTROL 15
2 BYTES |0 FILE DESIGNATOR LENGTH 15 {~1426
2BYIES |0 MAXBIOCKSIZE . 15}—1428
0I H ¥] H] H H L] L) H] H ¥ L)
- START OFFSET 1)
16 31 1430
4-8 BYTES e S Al S S B S i) Ll S B M S
52 39
40 , 47
QH H H k 1] H H L] L H L H H]
— LENGTH ;Q?
L b-1432
4-3 BYTES A s secss e s e s It S S I S 43
32 39
0y
Gi H ¥ L] { 4 4 L : L} N 1 H [} i1§
1434
VARIABLE |- FILE DESIGNATOR -
T I T I T I T T
) O 1514
J— o
i :
VARIABLE i— METADATA —-1480
~ .
H
§
H

FIG. 50

U.S. Patent Apr. 26,2016 Sheet 27 of 38 US 9,326,307 B2
1422
1450 1452 1454 | {1456 |
<] ASHCH | ORDRWE | SDRWE VERSION
187 —— 181181181 4 BT |
1424
N 1470 U472 1474
BRERTENT | - SOFF | DEFLEN
1500
1 BYTE TRANSFER CONTROL }—1502
2 BYTES |0 MAX BLOCK SZE 15|~1504
g“""’1"""1’“’“?“"“‘“i‘““’"!’“’"’T”"“'i“'“T““’i“’“"?’““i‘“““’i“"’“}‘"“f‘“‘“i‘““’"
VARIABLE b~ METADATA _ 1506
;..w.wanﬂ.mmhm..Jwwn&mm&..mmlmw..&mmhmmimwm&mmhmmimmdmmhmm
1520
2BYTES O . STATUSCODE 1515z
1 BYTE NEXT STATUS 1524
;""""'E"""'T"""'E"""“!"""3’“"“?"""'“!"""5""‘"1"‘"""5’““!‘"”“’}"""E’"""'F"""l‘""";
§
VARIABLE - ADD'L INFO -+4-1526

b o o o con ok oo o o v e o0 e e oo B i s 200 o oo o o m o e o oo oo B v B s sl o oo B o

FIG. 54

U.S. Patent

1540

Apr. 26,2016 Sheet 28 of 38

1542

0 TMNIRCONRL 7|8 RANGE CONTROL 15 |—1544

0 . MAXBLOCKSIZE 15{—1546
e B sk bl e uboee Sl Sl elis el vhetes Balbochs bl ssoali ek shugies’
L0 5!
By LENGTH {(4-8 BYTES) .

0 3111548
b e mpomfrmfmmpmem = mf m e = == e e]
: 32 391
E“‘“’ 3

| SUREPS RSSUICS SRRV U MR S (U SR S N NP U S — - N —_—

FIG. 55

US 9,326,307 B2

U.S. Patent Apr. 26, 2016 Sheet 29 of 38 US 9,326,307 B2

1600
1606 1604 1602
FABRIC 1D SUBNET: WI-Fi MAC ADDRESS
| | | !
127 79 63 0
SROUTE wesshars <
1018 > USNG EULA VA
WS
1028~
1022 7
\/

< RECENE HESSAGES O
COVRWE

< SEND VESSGE |
> USHG LOW POVER S
=M

FIG. 57

1650

RECEIVE PACKET ON DEVICE | 40
ON TWO NETWORKS

ROUTE PACKET ONTO NETWORK 1654
INDICATED BY SUBNET

FIG. 58

U.S. Patent Apr. 26, 2016 Sheet 30 of 38 US 9,326,307 B2

167G

GENERATE MESSAGE 1672

CONSIDER RELIABILITY FACTORS
& TYPEL OF MESSAGE
e NETWORK TYPE
& DISTANCE TO TRAVEL
& POWER SENSITIVITY OF TARGET /
TRANSMITTING NODES

1674

~ 1676

A THORE™
" RELIABILITY

FIG. 99

Ry . DESE?RED
YES
/’ﬁlﬁ&i} Klﬁ?%
SEND MESSAGE SEND MESSAGE
¥ia TCF ViA UDP

U.S. Patent Apr. 26, 2016 Sheet 31 of 38

1702 1;06
WEAVE
DE‘:QCE 005
SUSNNLA NN, e 1708
1710 ' DDS SERVICE BROADCAST/S
} B
/GETPROPERTY(SUFPORTS-N)/
e —

~714

US 9,326,307 B2

1704

WEAVE
DEVICE
B

LDEVICE BA..1712 ZINVOKE METHOD-N,

i7le
/RESPONSE/

Fsoe

1700

FIG. 60

US 9,326,307 B2

Sheet 32 of 38

Apr. 26,2016

U.S. Patent

e 19 'Ol

if\! it oy s
@mm\\h o ey S Mu (e) Sy \
N 641 e) (g’ Soegonpy
V8L~ TR 0 TS e T 4 0671
\\ T i 5/ \\ RS Y) gm_%méw\\
W 0LL1~ ficmmﬂ 9.1 R
88/ 1 /TR RN ,v e
89/ 1.,/ TERSTT, {1 VRN /|« = A A
\ _wrmﬁ*ﬁ MM \\\ fiN i1
- \ fuRATy mvw HAIOMISH :
0941 / P WAV A
VL 2941 091
< 2641
j pprr OOk 5 mwmwhﬂ mmmﬂmkp\mwa
DAL <9741 : - A

m\~¢ - X t b
\ RIS) qgmmﬁgz \\V

\\ (e R) e \\

fgwmmM

T, SRy \\

R

(Gt) AR,/

yd

Ryl SR/

~z8/1

()

WCOY DN

SR e,

“9g/1

[a3

921

@

4000 INOH

0y

8eL1

021

30N
HOYHYS
Hi 1N

[RA}

T
2HONT
R,
.ﬁ zm»3w>m
84/t

(&

AYMTIVH

U.S. Patent

CLIENT DEVICE

INSTALL App
O CLENT
DEVEE
¥
CHOOSE
A _HOME

1806-

1808

APP GETS
1 CONFIG FROM |
JHE SERVCE /

NS

12w o

1814~

D HONE ™
HAS & PAREL

1818 HAS & PAIRED

AP CHOOSES TON
| ADD DEVICE 10
EXISTING FABRIC /

A ERBRE™
<RI >
NIHE

THSTRUCTIONS WAKE
A DEVICE FROM
EXISTING FABRIC

¥£s

Apr. 26,2016

APP CHOOSES TOY
CREATE A NEW |

Sheet 33 of 38

EXISTING DEVICE

EXISTING DEVICE

US 9,326,307 B2

NEW DEVICE

o] 1802
BOX

INSTRUCTICRS

INGTALL APP

1804

NEW DEVICE

USER PRESSES BUTTON

N EXISTING DEVICE

b

PP GETS W
NETWORK CONFIG FROM
EAISTING FARRIC DEVICE

INSTRUCTIONS WAKE
NEW DEVICE

1828

1824

EXISTING DEVICE

1830
NEW DEVICE

URER PRESSES BUTTON
ON NEW DEVEEE

U.S. Patent Apr. 26, 2016

1832 '"""'?,,-—s\
Y

Sheet 34 of 38

1836

AP INSTRUCTS E)(ESv NG DEVCE lNSFRUCTIQNS SWITCH
TO CONNECT NEW DEVICE, T 10 DE‘!ICE WA

CONNECTS, SETS UP PRONY
USER SWI TLHES Wi-H

FOR AP
JWGRKQ RETURNS T0 A’P

1834
184(}‘\(

I VALID CODE FOR
DEVICE, CONTINUE, ELSE,
SHOW ERROR
ASK FOR CODE AGAIN

APP DETECTS "éE’V DEVICE 18%
DSPLAYS SERIAL NUMBER

ESTRESTEGNS SOAN QR
\ CODE OR ENTER CODE/

USER ENT ERS CODE 1

EXISTING DEVICE

US 9,326,307 B2

NEW DEVICE

LONNECTION 18
ESTABLISHER WITH APP

CORNECTION IS FSTARLISHED
1848”{ W svw DEVICE

,{APP [SFAiLSAFE [0 REVERT
18507 conpg IF TII\JE&‘}L" REFORE DONES

“FVIC' BELONG TO ~,

1854 ,
| S\ JOTHER FABRIC,

(8P INSTRUCTS 7Y
_JO_LEAVE FABRIC A

P T
< NEW FABRIC_>>

1858

Ap? ENSTRUS ORVICE 10
ENUMERATE WE-F NETWORKS

¥
INSTRUCTIONS CHOOGE OR
ENTER WI-FI NETWERK

¥
USER SELECTS THEIR WiHF, OR
ENTERS AND SSID+SECURNTY TYRE

¥
USER ENTERS PASSWORD |

1846

FIG. 63

U.S. Patent Apr. 26, 2016

VTR O

10 NEW DRVCE 1868

TSRS TV,
0 7S] gemz\azcraom 1870
CRERITG
TORNECTION

()/\1872
¥

Sheet 35 of 38

EXISTING DEVICE

US 9,326,307 B2

NEW DEVICE

iF INTERNET CONNECTION FAILS, USER 1§
PROMPTED 7O CHECK NETWORK
iF TS NOT RESOLVED BEFORE TIMEOUT,

1874

DEVICE CONFIRMS
INTERNET CONNECTIVITY

FAILSAFE REVERTS NETWORK CONFIG

N 1876

CREATING ™K.,

< RNEN
. FARRC %

ANGES 10
HOME Wi-H
HETWORK

NO USER CH

APP COMMUNICATES
FAGRIC JOIN OR CREATL
REQUEST + REGISEER
SERVICE REG TO DEVICE

1

\

1882

- 1880

EXISTING DEVICE

NEW DRVICE

1884~

DEVICE RESPONDS 10

\{REGlSTER SERVICE Wi

H
SECURE PARING T@KEQ

AP CANCELS FAILSAFE e
@ SENDING DISARM 1886

PAIRING 1S

}"*1890
FIG

SETLP
SETTNGS
¥

(

1892-™

CHOOSE
SETTINGS

1888 7

/DEVICE RECENES
\FAILSATE DISARM..

COMPLETE

. 64

U.S. Patent

1800

Apr. 26,2016 Sheet 36 of 38

US 9,326,307 B2

DEVICE 1 ACTIVATED

1902

JOINING

DEVICE 1 CREATES 802.154

NETWORK

1904

DEVICE 1 ASSIGNS ITSELF
TWO 1P ADDRESSES

1906

DEVICE 1 SCANS FOR OTHER
802.15.4 NETWORK

1908

DEVICE 2 PERFORMS ABOVE ACTS

-—~1910

DEVICE 1 OR 2 DETECTS
THE OTHER'S NETWORK

-~ 1912

PERFORM INITIATING DEVICE
BEHAVIOR OR RESPONDING
DEVICE BEHAVIOR

13814

FIG.

65

U.S. Patent

1820

Apr. 26,2016

Sheet 37 of 38

US 9,326,307 B2

INITIATING DEVICE JOINS OTHER
DEVICE'S NETWORK

1922

INITIATING DEVICE REASSIGNS
ITS {Pv6 ULA

1924

INITIATING DEVICE SENDS
SOLICIT JOINING MESSAGE

1926

INITIATING DEVICE RECEIVES A
JCOIN EXISTING FABRIC REQUEST
OR SOLICIT JOINING REQUEST

1928

JOIN EXISTING
FABRIC REQUEST

/ /~193(§

REQUEST

SOLICIT JOINING

1934
//"

REQUEST

INITIATING DEVICE JOINS
FABRIC USING INFORMATION
FROM EXISTING FABRIC

INITIATING DEVICE
SENDS FABRIC INFORMATION
IN A JOIN EXISTING FABRIC

REQUEST

1932
/.r*'

INITIATING DEVICE
SENDS RESPONSE INDICATING
T HAS JOINED TRHE
NETWORK

FIG. 66

U.S. Patent

Apr. 26,2016 Sheet 38 of 38

1950

US 9,326,307 B2

RESPONDING DEVICE RECEIVES

1952

SOLICIT JOINING MESSAGE

-1954

NO 7 ExisTinG SJYES
~ FABRIC _~
RESPONDING DEVICE | igsg RESPONDING DEVICE
CREATES FABRIC REVIEWS DISCRIMINATOR
% 1967 VALUE AND
"MEMBER OF FABRIC®
RESPONDING DEVICE | 1g5g FLAG IN SOLICIT JOINING
JOINS FABRIC MESSAGE
5,)
RESPONDING DEVICE P 964
SENDS JOIN EXISTING 1960 e NOT™

FABRIC REQUEST

iN FABRIC OR

~_ DV RESP.
~._ DEV. _~

'

RESPONDING DEVICES
LEAVES CURRENT FABRIC

1966 | YES

|

RESPONDING DEVICE
SENDS SOLICIT JOINING
MESSAGE

1968

RESPONDING DEVICE

!

1974~ SENDS JOIN EXISTING

FAERIC REQUEST

RESPONDING DEVICE
RECEIVES JOIN EXISTING
FABRIC REQUEST FROM

INITIATING DEVICE

1970

!

RESPONDING DEVICE
JOINS FABRIC USING
INFORMATION FROM
JOIN EXISTING FABRIC
REQUEST

1972

FIG. 67

US 9,326,307 B2

1
EFFICIENT COMMUNICATION FOR
DEVICES OF A HOME NETWORK

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a Continuation Application of, and
claims priority to, U.S. patent application Ser. No. 13/926,
335, entitled “Efficient Communication for Devices of a
Home Network”, filed Jun. 25, 2013, the entirety of which is
incorporated by reference herein for all purposes.

BACKGROUND

This disclosure relates to efficient communication to
enable various devices, including low-power or sleepy
devices, to communicate in a home network or similar envi-
ronment.

This section is intended to introduce the reader to various
aspects of art that may be related to various aspects of the
present techniques, which are described and/or claimed
below. This discussion is believed to be helpful in providing
the reader with background information to facilitate a better
understanding of the various aspects of the present disclosure.
Accordingly, it should be understood that these statements are
to be read in this light, and not as admissions of prior art.

Network-connected devices appear throughout homes.
Some of these devices are often capable of communicating
with each other through a single network type (e.g., WiFi
connection) using a transfer protocol. It may be desired to use
less power intensive connection protocols for some devices
that are battery powered or receive a reduced charge. How-
ever, in some scenarios, devices connected to a lower power
protocol may not be able to communicate with devices con-
nected to a higher power protocol (e.g., WiFi).

Moreover, numerous electronic devices are now capable of
connecting to wireless networks. For example, smart meter
technology employs a wireless network to communicate elec-
trical energy consumption data associated with residential
properties back to a utility for monitoring, billing, and the
like. As such, a number of wireless networking standards are
currently available to enable electronic devices to communi-
cate with each other. Some smart meter implementations, for
instance, employ Internet Protocol version 6 (IPv6) over Low
power Wireless Personal Area Networks (6LoWPAN) to
enable electronic devices to communicate with a smart meter.
However, the currently available wireless networking stan-
dards such as 6L.LoWPAN may not be generally well equipped
to support electronic devices dispersed throughout a resi-
dence orhome for one or more practical scenarios. That is, the
currently available wireless networking standards may not
efficiently connect all electronic devices of a network in a
secure yet simple, consumer-friendly manner in view of one
or more known practical constraints. Moreover, for one or
more practical scenarios, the currently available wireless net-
working standards may not provide an efficient way to add
new electronic devices to an existing wireless network in an
ad hoc manner.

Additionally, when providing a wireless network standard
for electronic devices for use in and around a home, it would
be beneficial to use a wireless network standard that provides
an open protocol for different devices to learn how to gain
access to the network. Also, given the number of electronic
devices that may be associated with a home, it would be
beneficial that the wireless network standard be capable of
supporting Internet Protocol version 6 (IPv6) communication
such that each device may have a unique IP address and may

25

35

40

45

50

2

be capable of being accessed via the Internet, via a local
network in a home environment, and the like. Further, it
would be beneficial for the wireless network standard to allow
the electronic devices to communicate within the wireless
network using a minimum amount of power. With these fea-
tures in mind, it is believed that one or more shortcomings is
presented by each known currently available wireless net-
working standard in the context of providing a low power,
IPv6-based, wireless mesh network standard that has an open
protocol and can be used for electronic devices in and around
a home. For example, wireless network standards such as
Bluetooth®, Dust Networks®, Z-wave®, WilFi, and Zig-
Bee® fail to provide one or more of the desired features
discussed above.

Bluetooth®, for instance, generally provides a wireless
network standard for communicating over short distances via
short-wavelength radio transmissions. As such, Bluetooth’s®
wireless network standard may not support a communication
network of a number of electronic devices disposed through-
out a home. Moreover, Bluetooth’s® wireless network stan-
dard may not support wireless mesh communication or IPv6
addresses.

As mentioned above, the wireless network standard pro-
vide by Dust Networks® may also bring about one or more
shortcomings with respect to one or more features that would
enable electronic devices disposed in a home to efficiently
communicate with each other. In particular, Dust Net-
works’® wireless network standard may not provide an open
protocol that may be used by others to interface with the
devices operating on Dust Networks’ network. Instead, Dust
Networks® may be designed to facilitate communication
between devices located in industrial environments such as
assembly lines, chemical plants, and the like. As such, Dust
Networks'0 wireless network standard may be directed to
providing a reliable communication network that has pre-
defined time windows in which each device may communi-
cate to other devices and listen for instructions from other
devices. In this manner, Dust Networks'® wireless network
standard may require sophisticated and relatively expensive
radio transmitters that may not be economical to implement
with consumer electronic devices for use in the home.

Like Dust Networks’® wireless network standard, the
wireless network standard associated with Z-wave® may not
be an open protocol. Instead, Z-wave’s® wireless network
standard may be available only to authorized clients that
embed a specific transceiver chip into their device. Moreover,
Z-wave’s® wireless network standard may not support IPv6-
based communication. That is, Z-wave’s® wireless network
standard may require a bridge device to translate data gener-
ated on a Z-wave® device into [P-based data that may be
transmitted via the Internet.

Referring now to ZigBee’s® wireless network standards,
ZigBee® has two standards commonly known as ZigBee®
Pro and ZigBee® IP. Moreover, ZigBee® Pro may have one
or more shortcomings in the context of support for wireless
mesh networking Instead, ZigBee® Pro may depend at least
in part on a central device that facilitates communication
between each device in the ZigBee® Pro network. In addition
to the increased power requirements for that central device,
devices that remain on to process or reject certain wireless
traffic can generate additional heat within their housings that
may alter some sensor readings, such as temperature read-
ings, acquired by the device. Since such sensor readings may
be useful in determining how each device within the home
may operate, it may be beneficial to avoid unnecessary gen-

US 9,326,307 B2

3

eration of heat within the device that may alter sensor read-
ings. Additionally, ZigBee® Pro may not support IPv6 com-
munication.

Referring now to ZigBee® IP, ZigBee® IP may bring
about one or more shortcomings in the context of direct
device-to-device communication. ZigBee® IP is directed
toward the facilitation of communication by relay of device
data to a central router or device. As such, the central router or
device may require constant powering and therefore may not
represent a low power means for communications among
devices. Moreover, ZigBee® IP may have a practical limit in
the number of nodes (i.e., ~20 nodes per network) that may be
employed in a single network. Further, ZigBee® IP uses a
“Ripple” routing protocol (RPL) that may exhibit high band-
width, processing, and memory requirements, which may
implicate additional power for each ZigBee® IP connected
device.

Like the ZigBee® wireless network standards discussed
above, WiFi’s wireless network may exhibit one or more
shortcomings in terms of enabling communications among
devices having low-power requirements. For example,
WiFi’s wireless network standard may also require each net-
worked device to always be powered up, and furthermore may
require the presence of a central node or hub. As known in the
art, WiFi is a relatively common wireless network standard
that may be ideal for relatively high bandwidth data transmis-
sions (e.g., streaming video, syncing devices). As such, WiFi
devices are typically coupled to a continuous power supply or
rechargeable batteries to support the constant stream of data
transmissions between devices. Further, WiFi’s wireless net-
work may not support wireless mesh networking Even so,
WiFi sometimes may offer better connectivity than some
lower-powered protocols.

SUMMARY

A summary of certain embodiments disclosed herein is set
forth below. It should be understood that these aspects are
presented merely to provide the reader with a brief summary
of these certain embodiments and that these aspects are not
intended to limit the scope of this disclosure. Indeed, this
disclosure may encompass a variety of aspects that may not
be set forth below.

Systems and methods are provided for efficient communi-
cation through a fabric network of devices in a home envi-
ronment or similar environment. For example, an electronic
device may efficiently control communication to balance
power and reliability concerns, may efficiently communicate
messages to certain preferred networks by analyzing Internet
Protocol version 6 (IPv6) packet headers that use an Extended
Unique Local Address (EULA), may efficiently communi-
cate software updates and status reports throughout a fabric
network, and/or may easily and efficiently join a fabric net-
work.

For instance, an electronic device may include memory or
storage storing instructions to operate a network stack, a
processor to execute the instructions, and a network interface
to join a network-connected fabric of devices and communi-
cate a message to a target device of the fabric of devices using
the network stack. The network stack may include an appli-
cation layer to provide an application payload with data to be
transmitted in the message, a platform layer to encapsulate
the application payload in a general message format of the
message, a transport layer to selectably transport the message
using either User Datagram Protocol (UDP) or Transmission
Control Protocol (TCP), and a network layer to communicate
the message using Internet Protocol Version 6 (IPv6) via one

10

15

20

25

30

35

40

45

55

60

4

or more networks. These networks may include, for example,
an 802.11 wireless network, an 802.15.4 wireless network, a
powerline network, a cellular network, and/or an Ethernet
network. Moreover, the application layer, the platform layer,
the transport layer, and/or the network layer may determine a
property of the manner of communication of the message to
the target node based at least in part on a type of the message,
the network over which the message is to be sent, a distance
over which the message may travel through the fabric, power
consumption behavior of the electronic device, power con-
sumption behavior of the target device, and/or power con-
sumption behavior of an intervening device of the fabric of
devices that is to communicate the message between the
electronic device and the target device. Further, varying the
property of the manner of communication may cause the
electronic device, the target device, and/or the intervening
device to consume different amounts of power and cause the
message to more reliably or less reliably reach the target node.

In another example, a tangible, non-transitory computer-
readable medium may include to be executed by a first elec-
tronic device communicably coupled to other electronic
devices of a fabric of devices in a home environment. The
instructions may include those to receive an Internet Protocol
version 6 (IPv6) message at the first electronic device from a
second electronic device over a first network of the fabric of
devices. The message may be bound for a target electronic
device. The instructions may further include instructions to
identify an Extended Unique Local Address encoded in an
IPv6 header of the message. Here, the Extended Unique
Local Address may indicate that a second network is pre-
ferred to reach the target electronic device. The instructions
also may include instructions to communicate the message
through the fabric of devices toward the target electronic
device using second network based at least in part on the
Extended Unique Local Address.

A method for transferring a software update over a fabric
network may include sending an image query message from
a first device in the fabric network to a second device in the
fabric network or a local or remote server. The image query
message may include information regarding software stored
on the first device and transfer capabilities of the first device.
An image query response may be received by the first device
from the second device or the local or remote server. The
image query response may indicate whether the software
update is available and includes download information hav-
ing a uniform resource identifier (URI) to enable the first
device to download the software update. The image query
message may include sender information regarding software
stored on a sender device and transfer capabilities of the
sender device and an update priority. Using the URIL the
software update may be downloaded at the first device from
the sender device. The software may be downloaded at a time
based at least in part on the update priority and network traffic
in the fabric network, and may be downloaded in a manner
based at least in part on common transfer capabilities indi-
cated in the image query and the image query response.

In a further example, a tangible, non-transitory computer-
readable medium may store a status reporting format. The
status reporting format may include a profile field to indicate
a status update type of a plurality of status update types, a
status code to indicate a status being reported—the status
code may be interpreted in a manner based at least in part on
the status update type—and a next status field to indicate
whether an additional status is included in a status report
formed using the status reporting format.

Another example of an electronic device includes memory
to store instructions to enable the first electronic device to pair

US 9,326,307 B2

5

with a fabric network comprising a second electronic device,
a processor to execute the instructions, and a network inter-
face to access 802.11 and 802.15.4 logical networks. The
instructions may include instructions to establish communi-
cation with the second electronic device via a first 802.15.4
logical network. The second electronic device may be paired
with the fabric network and may communicate with a service
via another logical network in the fabric network. The instruc-
tions may also include instructions to receive network con-
figuration information from the service via the second elec-
tronic device to enable the first electronic device to join a first
802.11 logical network and to establish communication over
the first 802.11 logical network, connect to the service via the
first 802.11 logical network, and register to pair with the
fabric network via communication with the service.

Various refinements of the features noted above may be
used in relation to various aspects of the present disclosure.
Further features may also be incorporated in these various
aspects as well. These refinements and additional features
may be used individually or in any combination. For instance,
various features discussed below in relation to one or more of
the illustrated embodiments may be incorporated into any of
the above-described aspects of the present disclosure alone or
in any combination. The brief summary presented above is
intended only to familiarize the reader with certain aspects
and contexts of embodiments of the present disclosure with-
out limitation to the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of this disclosure may be better understood
upon reading the following detailed description and upon
reference to the drawings in which:

FIG. 1 illustrates a block diagram of a general device that
may communicate with other devices disposed in a home
environment using an efficient network layer protocol, in
accordance with an embodiment;

FIG. 2 illustrates a block diagram of' ahome environment in
which the general device of FIG. 1 may communicate with
other devices via the efficient network layer protocol, in
accordance with an embodiment;

FIG. 3 illustrates an example wireless mesh network asso-
ciated with the devices depicted in the home environment of
FIG. 2, in accordance with an embodiment;

FIG. 4 illustrates a block diagram of an Open Systems
Interconnection (OSI) model that characterizes a communi-
cation system for the home environment of FIG. 2, in accor-
dance with an embodiment;

FIG. 5 illustrates a detailed view an efficient network layer
in the OSI model of FIG. 4, in accordance with an embodi-
ment;

FIG. 6 illustrates a flowchart of a method for implementing
a Routing Information Protocol-Next Generation (RIPng)
network as a routing mechanism in the efficient network layer
of FIG. 5, in accordance with an embodiment;

FIG. 7A-7D illustrates an example of how the RIPng net-
work of the method of FIG. 6 can be implemented, in accor-
dance with an embodiment;

FIG. 8 illustrates a block diagram of a manufacturing pro-
cess that includes embedding a security certificate into the
general device of FIG. 1, in accordance with an embodiment;

FIG. 9 illustrates an example handshake protocol between
devices in the home environment of FIG. 2 using a Datagram
Transport Layer Security (DTLS) protocol in the efficient
network layer of FIG. 5, in accordance with an embodiment;

FIG. 10 illustrates the fabric network having a single logi-
cal network topology, in accordance with an embodiment;

15

25

30

35

40

45

55

6

FIG. 11 illustrates the fabric network having a star network
topology, in accordance with an embodiment;

FIG. 12 illustrates the fabric network having a overlapping
networks topology, in accordance with an embodiment;

FIG. 13 illustrates a service communicating with one or
more fabric networks, in accordance with an embodiment;

FIG. 14 illustrates two devices in a fabric network in com-
municative connection, in accordance with an embodiment;

FIG. 15 illustrates a unique local address format (ULA)
that may be used to address devices in a fabric network, in
accordance with an embodiment;

FIG. 16 illustrates a process for proxying periphery devices
on a hub network, in accordance with an embodiment;

FIG. 17 illustrates a tag-length-value (TLV) packet that
may be used to transmit data over the fabric network, in
accordance with an embodiment;

FIG. 18 illustrates a general message protocol (GMP) that
may be used to transmit data over the fabric network that may
include the TLV packet of FIG. 17, in accordance with an
embodiment;

FIG. 19 illustrates a message header field of the GMP of
FIG. 18, in accordance with an embodiment;

FIG. 20 illustrates a key identifier field of the GMP of FIG.
18, in accordance with an embodiment;

FIG. 21 illustrates an application payload field of the GMP
of FIG. 18, in accordance with an embodiment;

FIG. 22 illustrates a status reporting schema that may be
used to update status information in the fabric network, in
accordance with an embodiment;

FIG. 23 illustrates a profile field of the status reporting
schema of FIG. 22, in accordance with an embodiment;

FIG. 24 illustrates a protocol sequence that may be used to
perform a software update between a client and a server, in
accordance with an embodiment;

FIG. 25 illustrates an image query frame that may be used
in the protocol sequence of FIG. 24, in accordance with an
embodiment;

FIG. 26 illustrates a frame control field of the image query
frame of FIG. 25, in accordance with an embodiment;

FIG. 27 illustrates a product specification field of the image
query frame of FIG. 25, in accordance with an embodiment;

FIG. 28 illustrates a version specification field of the image
query frame of FIG. 25, in accordance with an embodiment;

FIG. 29 illustrates a locale specification field of the image
query frame of FIG. 25, in accordance with an embodiment;

FIG. 30 illustrates an integrity types supported field of the
image query frame of FIG. 25, in accordance with an embodi-
ment;

FIG. 31 illustrates an update schemes supported field of the
image query frame of FIG. 25, in accordance with an embodi-
ment;

FIG. 32 illustrates an image query response frame that may
be used in the protocol sequence of FIG. 24, in accordance
with an embodiment;

FIG. 33 illustrates a uniform resource identifier (URI) field
of'the image query response frame of FIG. 32, in accordance
with an embodiment;

FIG. 34 illustrates a integrity specification field of the
image query response frame of FIG. 32, in accordance with an
embodiment;

FIG. 35 illustrates an update scheme field of the image
query response frame of FIG. 32, in accordance with an
embodiment;

FIG. 36 illustrates a sequence used to employ a data man-
agement protocol to manage data between devices in the
fabric network, in accordance with an embodiment;

US 9,326,307 B2

7

FIG. 37 illustrates a snapshot request frame that may be
used in the sequence of FIG. 36, in accordance with an
embodiment;

FIG. 38 illustrates an example profile schema that may be
accessed using the snapshot request frame of FIG. 37, in
accordance with an embodiment;

FIG. 39 is a binary format of a path that may indicate a path
in a profile schema, in accordance with an embodiment;

FIG. 40 illustrates a watch request frame that may be used
in the sequence of FIG. 36, in accordance with an embodi-
ment;

FIG. 41 illustrates a periodic update request frame that may
be used in the sequence of FIG. 36, in accordance with an
embodiment;

FIG. 42 illustrates a refresh request frame that may be used
in the sequence of FIG. 36, in accordance with an embodi-
ment;

FIG. 43 illustrates a cancel view request that may be used
in the sequence of FIG. 36, in accordance with an embodi-
ment;

FIG. 44 illustrates a view response frame that may be used
in the sequence of FIG. 36, in accordance with an embodi-
ment;

FIG. 45 illustrates an explicit update request frame that
may be used in the sequence of FIG. 36, in accordance with an
embodiment;

FIG. 46 illustrates a view update request frame that may be
used in the sequence of FIG. 36, in accordance with an
embodiment;

FIG. 47 illustrates an update item frame that may be
updated using the sequence of FIG. 36, in accordance with an
embodiment;

FIG. 48 illustrates an update response frame that may be
sent as an update response message in the sequence FIG. 36,
in accordance with an embodiment;

FIG. 49 illustrates a communicative connection between a
sender and a receiver in a bulk data transfer, in accordance
with an embodiment;

FIG. 50 illustrates a SendInit message that may be used to
initiate the communicative connection by the sender of FIG.
49, in accordance with an embodiment;

FIG. 51 illustrates a transfer control field of the SendInit
message of FIG. 50, in accordance with an embodiment;

FIG. 52 illustrates a range control field of the Sendlnit
message of FIG. 51, in accordance with an embodiment;

FIG. 53 illustrates a Send Accept message that may be used
to accept a communicative connection proposed by the Sen-
dInit message of FIG. 50 sent by the sender of FIG. 50, in
accordance with an embodiment;

FIG. 54 illustrates a SendReject message that may be used
to reject a communicative connection proposed by the Sen-
dInit message of FIG. 50 sent by the sender of FIG. 50, in
accordance with an embodiment;

FIG. 55 illustrates a ReceiveAccept message that may be
used to accept a communicative connection proposed by the
receiver of FIG. 50, in accordance with an embodiment;

FIG. 56 is a block diagram of an example of an IPv6 packet
header using an Extended Unique Local Address (EULA), in
accordance with an embodiment;

FIG. 57 is a block diagram of an example of communicat-
ing an IPv6 packet having the IPv6 packet of FIG. 56 through
a fabric topology having two networks, in accordance with an
embodiment;

FIG. 58 is a flowchart of a method for efficiently commu-
nicating the IPv6 packet through the fabric of FIG. 57 using
the IPv6 packet header of FIG. 56, in accordance with an
embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 59 is a flowchart of a method for selecting an efficient
transport protocol over which to send a message based at least
in part on one or more reliability factors, in accordance with
an embodiment;

FIG. 60 is a diagram illustrating a use case of a fabric of
devices in which one device invokes a method on another
device, in accordance with an embodiment;

FIG. 61 is a diagram illustrating a use case of a fabric of
devices in which an alarm message is propagated through a
number of low-power, sleepy devices, in accordance with an
embodiment;

FIGS. 62-64 are flowcharts of a method for introducing a
new device into a fabric of devices, in accordance with an
embodiment; and

FIGS. 65-67 are flowcharts of another method for intro-
ducing a new device into a fabric of devices, in accordance
with an embodiment.

DETAILED DESCRIPTION

One or more specific embodiments of the present disclo-
sure will be described below. These described embodiments
are only examples of the presently disclosed techniques.
Additionally, in an effort to provide a concise description of
these embodiments, all features of an actual implementation
may not be described in the specification. It should be appre-
ciated that in the development of any such actual implemen-
tation, as in any engineering or design project, numerous
implementation-specific decisions must be made to achieve
the developers’ specific goals, such as compliance with sys-
tem-related and business-related constraints, which may vary
from one implementation to another. Moreover, it should be
appreciated that such a development effort might be complex
and time consuming, but may nevertheless be a routine under-
taking of design, fabrication, and manufacture for those of
ordinary skill having the benefit of this disclosure.

When introducing elements of various embodiments of the
present disclosure, the articles “a,” “an,” and “the” are
intended to mean that there are one or more of the elements.
The terms “comprising,” “including,” and “having” are
intended to be inclusive and mean that there may be addi-
tional elements other than the listed elements. Additionally, it
should be understood that references to “one embodiment™ or
“an embodiment” of the present disclosure are not intended to
be interpreted as excluding the existence of additional
embodiments that also incorporate the recited features.

As used herein the term “HVAC” includes systems provid-
ing both heating and cooling, heating only, cooling only, as
well as systems that provide other occupant comfort and/or
conditioning functionality such as humidification, dehumidi-
fication and ventilation.

As used herein the terms power “harvesting,” “sharing”
and “stealing,” when referring to home devices, refer to deriv-
ing power from a power transformer through the equipment
load without using a direct or common wire source directly
from the transformer.

As used herein the term “thermostat” means a device or
system for regulating parameters such as temperature and/or
humidity within at least a part of an enclosure. The term
“thermostat” may include a control unit for a heating and/or
cooling system or a component part of a heater or air condi-
tioner. As used herein the term “thermostat” can also refer
generally to a versatile sensing and control unit (VSCU unit)
that is configured and adapted to provide sophisticated, cus-
tomized, energy-saving HVAC control functionality while at
the same time being visually appealing, non-intimidating,
elegant to behold, and delightfully easy to use.

US 9,326,307 B2

9

As used herein, the term “hazard detector” refers to any
home device that can detect evidence of fire (e.g., smoke,
heat, carbon monoxide) and/or other hazardous conditions
(e.g., extreme temperatures, buildup of dangerous gases).

This disclosure relates to efficient communication that may
be used by devices communicating with each other in a home
environment. The efficient communication of this disclosure
may enable a fabric of devices and/or services to communi-
cate in the home environment. Indeed, consumers living in
homes may find it useful to coordinate the operations of
various devices within their home such that all of their devices
are operated efficiently. For example, a thermostat device
may be used to detect a temperature of a home and coordinate
the activity of other devices (e.g., lights) based on the detected
temperature. The thermostat device may detect a temperature
that may indicate that the temperature outside the home cor-
responds to daylight hours. The thermostat device may then
convey to the light device that there may be daylight available
to the home and that thus the light should turn off. In another
example, a smart hazard detector may be able to detect envi-
ronmental conditions that indicate occupancy. The thermostat
device may query the hazard detector for these environmental
conditions and vary its operation accordingly. In addition to
efficiency, consumers may generally prefer user-friendly
devices that involve a minimum amount of set up or initial-
ization. That is, consumers may generally prefer devices that
are fully operational after performing a few number initial-
ization steps, especially those that may be performed by
almost any individual regardless of age or technical expertise.

To effectively and efficiently communicate data between
each other within the home environment, the devices may use
a fabric network that includes one or more logical networks to
manage communication between the devices. That is, the
efficient fabric network may enable numerous devices within
a home to communicate with each other using one or more
logical networks. The fabric network may be supported by an
efficient communication scheme involving, for example, an
efficient network layer, an efficient platform layer, and/or an
efficient application layer to manage communication. The
fabric network may support Internet Protocol version 6 (IPv6)
communication such that each connected device may have a
unique local address (ULA). In some examples, the IPv6
communications may employ an Extended Unique Local
Address (EULA). Moreover, to enable each device to inte-
grate with a home, it may be useful for each device to com-
municate within the network using low amounts of power.
That is, by enabling devices to communicate using low
power, the devices may be placed anywhere in a home with-
out being coupled to a continuous power source (e.g., battery-
powered).

On a relatively lower layer of the communication protocol
(e.g., the network layer), the fabric efficient network layer
may establish a communication network in which numerous
devices within a home may communicate with each other via
a wireless mesh network. The communication network may
support Internet Protocol version 6 (IPv6) communication
such that each connected device may have a unique Internet
Protocol (IP) address. Moreover, to enable each device to
integrate with a home, it may be useful for each device to
communicate within the network using low amounts of
power. Thatis, by enabling devices to communicate using low
power, the devices may be placed anywhere in a home with-
out being coupled to a continuous power source.

The efficient network layer may thus establish a procedure
in which data may be transferred between two or more
devices such that the establishment of the communication
network involves little user input, the communication

35

40

45

50

55

10

between devices involves little energy, and the communica-
tion network, itself, is secure. In one embodiment, the effi-
cient network layer may be an IPv6-based communication
network that employs Routing Information Protocol-Next
Generation (RIPng) as its routing mechanism and a Datagram
Transport Layer Security (DTLS) protocol as its security
mechanism. As such, the efficient network layer may provide
a simple means for adding or removing devices to a home
while protecting the information communicated between the
connected devices.

On relatively higher layers of the communication protocol
(e.g., the platform and/or application layers), the fabric of
devices may be created and maintained. These layers may
enable parametric software updates and status reports
throughout the fabric. These layers may also provide com-
munication that may be aware of certain network power con-
straints, such as the power constraints of “sleepy” or battery-
powered devices, and may communicate messages with these
factors in mind.

As such, embodiments of this disclosure relate to systems
and methods a fabric network that includes one or more
logical networks that enables devices connected to the fabric
to communicate with each other using a list of protocols
and/or profiles known to the devices. The communications
between the devices may follow a typical message format that
enables the devices to understand communications between
the devices regardless of which logical networks the commu-
nicating devices are connected to in the fabric. Within the
message format, a payload of data may be included for the
receiving device to store and/or process. The format and the
contents of the payload may vary according to a header within
the payload that indicates a profile (including one or more
protocols) and/or a type of message that is being sent accord-
ing to the profile.

According to some embodiments, two or more devices in a
fabric may communicate using status reporting protocols or
profiles. For example, in certain embodiments, a status
reporting protocol or schema may be included ina core profile
that is available to devices connected to the fabric. Using the
status reporting protocol, devices may send or request status
information to or from other devices in the fabric.

Similarly, in certain embodiments, two or more devices in
a fabric may communicate using update software protocols or
profiles. In some embodiments, the update software protocol
or schema may be included in a core profile that is available to
devices connected to the fabric. Using the update software
protocol, devices may request, send, or notify the presence of
updates within the fabric.

In certain embodiments, two or more devices in a fabric
may communicate using data management protocols or pro-
files. In some embodiments, the data management protocol or
schema may be included in a core profile that is available to
devices connected to the fabric. Using the update data man-
agement protocol, devices may request, view, or track node-
resident information that is stored in other devices.

Furthermore, in certain embodiments, two or more devices
in a fabric may transfer data using bulk data transfer protocols
or profiles. In some embodiments, the bulk data transfer pro-
tocol or schema may be included in a core profile that is
available to devices connected to the fabric. Using the bulk
data transfer protocol, devices may initiate, send, or receive
bulk data using any logical networks in the fabric. In certain
embodiments, either a sending or a receiving device using the
bulk data transfer protocol may be able to “drive” a synchro-
nous transfer between the devices. In other embodiments, the
bulk transfer may be performed with an asynchronous trans-
fer.

US 9,326,307 B2

11

Fabric Introduction

By way of introduction, FIG. 1 illustrates an example of a
general device 10 that may that may communicate with other
like devices within a home environment. In one embodiment,
the device 10 may include one or more sensors 12, a user-
interface component 14, a power supply 16 (e.g., including a
power connection and/or battery), a network interface 18, a
processor 20, and the like. Particular sensors 12, user-inter-
face components 14, and power-supply configurations may
be the same or similar with each devices 10. However, it
should be noted that in some embodiments, each device 10
may include particular sensors 12, user-interface components
14, power-supply configurations, and the like based on a
device type or model.

The sensors 12, in certain embodiments, may detect vari-
ous properties such as acceleration, temperature, humidity,
water, supplied power, proximity, external motion, device
motion, sound signals, ultrasound signals, light signals, fire,
smoke, carbon monoxide, global-positioning-satellite (GPS)
signals, radio-frequency (RF), other electromagnetic signals
or fields, or the like. As such, the sensors 12 may include
temperature sensor(s), humidity sensor(s), hazard-related
sensor(s) or other environmental sensor(s), accelerometer(s),
microphone(s), optical sensors up to and including camera(s)
(e.g., charged coupled-device or video cameras), active or
passive radiation sensors, GPS receiver(s) or radiofrequency
identification detector(s). While FIG. 1 illustrates an embodi-
ment with a single sensor, many embodiments may include
multiple sensors. In some instances, the device 10 may
includes one or more primary sensors and one or more sec-
ondary sensors. Here, the primary sensor(s) may sense data
central to the core operation of the device (e.g., sensing a
temperature in a thermostat or sensing smoke in a smoke
detector), while the secondary sensor(s) may sense other
types of data (e.g., motion, light or sound), which can be used
for energy-efficiency objectives or smart-operation objec-
tives.

One or more user-interface components 14 in the device 10
may receive input from the user and/or present information to
the user. The received input may be used to determine a
setting. In certain embodiments, the user-interface compo-
nents may include a mechanical or virtual component that
responds to the user’s motion. For example, the user can
mechanically move a sliding component (e.g., along a verti-
cal or horizontal track) or rotate a rotatable ring (e.g., along a
circular track), or the user’s motion along a touchpad may be
detected. Such motions may correspond to a setting adjust-
ment, which can be determined based on an absolute position
of'a user-interface component 104 or based on a displacement
of'a user-interface components 104 (e.g., adjusting a set point
temperature by 1 degree F. for every 10° rotation of a rotat-
able-ring component). Physically and virtually movable user-
interface components can allow a user to set a setting along a
portion of an apparent continuum. Thus, the user may not be
confined to choose between two discrete options (e.g., as
would be the case if up and down buttons were used) but can
quickly and intuitively define a setting along a range of pos-
sible setting values. For example, a magnitude of a movement
of a user-interface component may be associated with a mag-
nitude of a setting adjustment, such that a user may dramati-
cally alter a setting with a large movement or finely tune a
setting with s small movement.

The user-interface components 14 may also include one or
more buttons (e.g., up and down buttons), a keypad, a number
pad, a switch, a microphone, and/or a camera (e.g., to detect
gestures). In one embodiment, the user-interface component

10

15

20

25

30

40

45

50

55

60

12

14 may include a click-and-rotate annular ring component
that may enable the user to interact with the component by
rotating the ring (e.g., to adjust a setting) and/or by clicking
the ring inwards (e.g., to select an adjusted setting or to select
an option). In another embodiment, the user-interface com-
ponent 14 may include a camera that may detect gestures
(e.g., to indicate that a power or alarm state of a device is to be
changed). In some instances, the device 10 may have one
primary input component, which may be used to set a plural-
ity of types of settings. The user-interface components 14
may also be configured to present information to a user via,
e.g., a visual display (e.g., a thin-film-transistor display or
organic light-emitting-diode display) and/or an audio
speaker.

The power-supply component 16 may include a power
connection and/or a local battery. For example, the power
connection may connect the device 10 to a power source such
as a line voltage source. In some instances, an AC power
source can be used to repeatedly charge a (e.g., rechargeable)
local battery, such that the battery may be used later to supply
power to the device 10 when the AC power source is not
available.

The network interface 18 may include a component that
enables the device 10 to communicate between devices. In
one embodiment, the network interface 18 may communicate
using an efficient network layer as part of its Open Systems
Interconnection (OSI) model. In one embodiment, the effi-
cient network layer, which will be described in more detail
below with reference to FIG. 5, may enable the device 10 to
wirelessly communicate IPv6-type data or traffic using a
RIPng routing mechanism and a DTLS security scheme. As
such, the network interface 18 may include a wireless card or
some other transceiver connection.

The processor 20 may support one or more of a variety of
different device functionalities. As such, the processor 20
may include one or more processors configured and pro-
grammed to carry out and/or cause to be carried out one or
more of the functionalities described herein. In one embodi-
ment, the processor 20 may include general-purpose proces-
sors carrying out computer code stored in local memory (e.g.,
flash memory, hard drive, random access memory), special-
purpose processors or application-specific integrated circuits,
combinations thereof, and/or using other types of hardware/
firmware/software processing platforms. Further, the proces-
sor 20 may be implemented as localized versions or counter-
parts of algorithms carried out or governed remotely by
central servers or cloud-based systems, such as by virtue of
running a Java virtual machine (JVM) that executes instruc-
tions provided from a cloud server using Asynchronous Java-
Script and XML (AJAX) or similar protocols. By way of
example, the processor 20 may detect when a location (e.g., a
house or room) is occupied, up to and including whether it is
occupied by a specific person or is occupied by a specific
number of people (e.g., relative to one or more thresholds). In
one embodiment, this detection can occur, e.g., by analyzing
microphone signals, detecting user movements (e.g., in front
of a device), detecting openings and closings of doors or
garage doors, detecting wireless signals, detecting an IP
address of a received signal, detecting operation of one or
more devices within a time window, or the like. Moreover, the
processor 20 may include image recognition technology to
identify particular occupants or objects.

In certain embodiments, the processor 20 may also include
a high-power processor and a low-power processor. The high-
power processor may execute computational intensive opera-
tions such as operating the user-interface component 14 and
the like. The low-power processor, on the other hand, may

US 9,326,307 B2

13

manage less complex processes such as detecting a hazard or
temperature from the sensor 12. In one embodiment, the
low-power processor may wake or initialize the high-power
processor for computationally intensive processes.

In some instances, the processor 20 may predict desirable
settings and/or implement those settings. For example, based
on the presence detection, the processor 20 may adjust device
settings to, e.g., conserve power when nobody is home orin a
particular room or to accord with user preferences (e.g., gen-
eral at-home preferences or user-specific preferences). As
another example, based on the detection of a particular per-
son, animal or object (e.g., a child, pet or lost object), the
processor 20 may initiate an audio or visual indicator of
where the person, animal or object is or may initiate an alarm
or security feature if an unrecognized person is detected
under certain conditions (e.g., at night or when lights are off).

In some instances, devices may interact with each other
such that events detected by a first device influences actions of
a second device. For example, a first device can detect that a
user has pulled into a garage (e.g., by detecting motion in the
garage, detecting a change in light in the garage or detecting
opening of the garage door). The first device can transmit this
information to a second device via the efficient network layer,
such that the second device can, e.g., adjust a home tempera-
ture setting, a light setting, a music setting, and/or a security-
alarm setting. As another example, a first device can detect a
user approaching a front door (e.g., by detecting motion or
sudden light pattern changes). The first device may, e.g.,
cause a general audio or visual signal to be presented (e.g.,
such as sounding of a doorbell) or cause a location-specific
audio or visual signal to be presented (e.g., to announce the
visitor’s presence within a room that a user is occupying).

By way of example, the device 10 may include a thermostat
such as a Nest® Learning Thermostat. Here, the thermostat
may include sensors 12 such as temperature sensors, humid-
ity sensors, and the like such that the thermostat may deter-
mine present climate conditions within a building where the
thermostat is disposed. The power-supply component 16 for
the thermostat may be a local battery such that the thermostat
may be placed anywhere in the building without regard to
being placed in close proximity to a continuous power source.
Since the thermostat may be powered using a local battery, the
thermostat may minimize its energy use such that the battery
is rarely replaced.

In one embodiment, the thermostat may include a circular
track that may have a rotatable ring disposed thereon as the
user-interface component 14. As such, a user may interact
with or program the thermostat using the rotatable ring such
that the thermostat controls the temperature of the building by
controlling a heating, ventilation, and air-conditioning
(HVAC) unit or the like. In some instances, the thermostat
may determine when the building may be vacant based on its
programming. For instance, if the thermostat is programmed
to keep the HVAC unit powered off for an extended period of
time, the thermostat may determine that the building will be
vacant during this period oftime. Here, the thermostat may be
programmed to turn off light switches or other electronic
devices when it determines that the building is vacant. As
such, the thermostat may use the network interface 18 to
communicate with a light switch device such that it may send
a signal to the light switch device when the building is deter-
mined to be vacant. In this manner, the thermostat may effi-
ciently manage the energy use of the building.

Keeping the foregoing in mind, FIG. 2 illustrates a block
diagram of a home environment 30 in which the device 10 of
FIG. 1 may communicate with other devices via the efficient
network layer. The depicted home environment 30 may

25

30

35

40

45

14

include a structure 32 such as a house, office building, garage,
ormobile home. It will be appreciated that devices can also be
integrated into a home environment that does not include an
entire structure 32, such as an apartment, condominium,
office space, or the like. Further, the home environment 30
may control and/or be coupled to devices outside of the actual
structure 32. Indeed, several devices in the home environment
30 need not physically be within the structure 32 at all. For
example, a device controlling a pool heater 34 or irrigation
system 36 may be located outside of the structure 32.

The depicted structure 32 includes a number of rooms 38,
separated at least partly from each other via walls 40. The
walls 40 can include interior walls or exterior walls. Each
room 38 can further include a floor 42 and a ceiling 44.
Devices can be mounted on, integrated with and/or supported
by the wall 40, the floor 42, or the ceiling 44.

The home environment 30 may include a plurality of
devices, including intelligent, multi-sensing, network-con-
nected devices that may integrate seamlessly with each other
and/or with cloud-based server systems to provide any of a
variety of useful home objectives. One, more or each of the
devices illustrated in the home environment 30 may include
one or more sensors 12, a user interface 14, a power supply
16, a network interface 18, a processor 20 and the like.

Example devices 10 may include a network-connected
thermostat 46 such as Nest® Learning Thermostat—1st Gen-
eration T100577 or Nest® Learning Thermostat—2nd Gen-
eration T200577 by Nest Labs, Inc. The thermostat 46 may
detect ambient climate characteristics (e.g., temperature and/
or humidity) and control a heating, ventilation and air-condi-
tioning (HVAC) system 48. Another example device 10 may
include a hazard detection unit 50 such as a hazard detection
unit by Nest®. The hazard detection unit 50 may detect the
presence of a hazardous substance and/or a hazardous condi-
tion in the home environment 30 (e.g., smoke, fire, or carbon
monoxide). Additionally, an entryway interface devices 52,
which can be termed a “smart doorbell”, can detect a person’s
approach to or departure from a location, control audible
functionality, announce a person’s approach or departure via
audio or visual means, or control settings on a security system
(e.g., to activate or deactivate the security system).

In certain embodiments, the device 10 may include a light
switch 54 that may detect ambient lighting conditions, detect
room-occupancy states, and control a power and/or dim state
of'one or more lights. In some instances, the light switches 54
may control a power state or speed of a fan, such as a ceiling
fan.

Additionally, wall plug interfaces 56 may detect occu-
pancy of a room or enclosure and control supply of power to
one or more wall plugs (e.g., such that power is not supplied
to the plug if nobody is at home). The device 10 within the
home environment 30 may further include an appliance 58,
such as refrigerators, stoves and/or ovens, televisions, wash-
ers, dryers, lights (inside and/or outside the structure 32),
stereos, intercom systems, garage-door openers, floor fans,
ceiling fans, whole-house fans, wall air conditioners, pool
heaters 34, irrigation systems 36, security systems, and so
forth. While descriptions of FIG. 2 may identify specific
sensors and functionalities associated with specific devices, it
will be appreciated that any of a variety of sensors and func-
tionalities (such as those described throughout the specifica-
tion) may be integrated into the device 10.

In addition to containing processing and sensing capabili-
ties, each of the example devices described above may be
capable of data communications and information sharing
with any other device, as well as to any cloud server or any
other device that is network-connected anywhere in the

US 9,326,307 B2

15

world. In one embodiment, the devices 10 may send and
receive communications via the efficient network layer that
will be discussed below with reference to FIG. 5. In one
embodiment, the efficient network layer may enable the
devices 10 to communicate with each other via a wireless
mesh network. As such, certain devices may serve as wireless
repeaters and/or may function as bridges between devices in
the home environment that may not be directly connected
(i.e., one hop) to each other.

In one embodiment, a wireless router 60 may further com-
municate with the devices 10 in the home environment 30 via
the wireless mesh network. The wireless router 60 may then
communicate with the Internet 62 such that each device 10
may communicate with a central server or a cloud-computing
system 64 through the Internet 62. The central server or
cloud-computing system 64 may be associated with a manu-
facturer, support entity or service provider associated with a
particular device 10. As such, in one embodiment, a user may
contact customer support using a device itself rather than
using some other communication means such as a telephone
or Internet-connected computer. Further, software updates
can be automatically sent from the central server or cloud-
computing system 64 to the devices (e.g., when available,
when purchased, or at routine intervals).

By virtue of network connectivity, one or more of the
devices 10 may further allow a user to interact with the device
even if the user is not proximate to the device. For example, a
user may communicate with a device using a computer (e.g.,
a desktop computer, laptop computer, or tablet) or other por-
table electronic device (e.g., a smartphone) 66. A webpage or
application may receive communications from the user and
control the device 10 based on the received communications.
Moreover, the webpage or application may present informa-
tion about the device’s operation to the user. For example, the
user can view a current set point temperature for a device and
adjust it using a computer that may be connected to the
Internet 62. In this example, the thermostat 46 may receive the
current set point temperature view request via the wireless
mesh network created using the efficient network layer.

In certain embodiments, the home environment 30 may
also include a variety of non-communicating legacy appli-
ances 68, such as old conventional washer/dryers, refrigera-
tors, and the like which can be controlled, albeit coarsely
(ON/OFF), by virtue of the wall plug interfaces 56. The home
environment 30 may further include a variety of partially
communicating legacy appliances 70, such as infra-red (IR)
controlled wall air conditioners or other IR-controlled
devices, which can be controlled by IR signals provided by
the hazard detection units 50 or the light switches 54.

As mentioned above, each of the example devices 10
described above may establish a wireless mesh network such
that data may be communicated to each device 10. Keeping
the example devices of FIG. 2 in mind, FIG. 3 illustrates an
example wireless mesh network 80 that may be employed to
facilitate communication between some of the example
devices described above. As shown in FIG. 3, the thermostat
46 may have a direct wireless connection to the plug interface
56, which may be wirelessly connected to the hazard detec-
tion unit 50 and to the light switch 54. In the same manner, the
light switch 54 may be wirelessly coupled to the appliance 58
and the portable electronic device 66. The appliance 58 may
just be coupled to the pool heater 34 and the portable elec-
tronic device 66 may just be coupled to the irrigation system
36. The irrigation system 36 may have a wireless connection
to the entryway interface device 52. Each device in the wire-
less mesh network 80 of FIG. 3 may correspond to a node
within the wireless mesh network 80. In one embodiment, the

10

20

25

30

40

45

50

55

60

65

16

efficient network layer may specify that each node transmit
data using a RIPng protocol and a DTLS protocol such that
data may be securely transferred to a destination node via a
minimum number of hops between nodes.

Generally, the efficient network layer may be part of an
Open Systems Interconnection (OSI) model 90 as depicted in
FIG. 4. The OSI model 90 illustrates functions of a commu-
nication system with respect to abstraction layers. That is, the
OSI model may specify a networking framework or how
communications between devices may be implemented. In
one embodiment, the OSI model may include six layers: a
physical layer 92, a data link layer 94, a network layer 96, a
transport layer 98, a platform layer 100, and an application
layer 102. Generally, each layer in the OSI model 90 may
serve the layer above it and may be served by the layer below
it. In at least some embodiments, a higher layer may be
agnostic to technologies used in lower layers. For example, in
certain embodiments, the platform layer 100 may be agnostic
to the network type used in the network layer 96.

Keeping this in mind, the physical layer 92 may provide
hardware specifications for devices that may communicate
with each other. As such, the physical layer 92 may establish
how devices may connect to each other, assist in managing
how communication resources may be shared between
devices, and the like.

The data link layer 94 may specify how data may be trans-
ferred between devices. Generally, the data link layer 94 may
provide a way in which data packets being transmitted may be
encoded and decoded into bits as part of a transmission pro-
tocol.

The network layer 96 may specify how the data being
transferred to a destination node is routed. The network layer
96 may also provide a security protocol that may maintain the
integrity of the data being transferred.

The transport layer 98 may specify a transparent transfer of
the data from a source node to a destination node. The trans-
port layer 98 may also control how the transparent transfer of
the data remains reliable. As such, the transport layer 98 may
be used to verify that data packets intended to transfer to the
destination node indeed reached the destination node.
Example protocols that may be employed in the transport
layer 98 may include Transmission Control Protocol (TCP)
and User Datagram Protocol (UDP).

The platform layer 100 may establish connections between
devices according to the protocol specified within the trans-
port layer 98. The platform layer 100 may also translate the
data packets into a form that the application layer 102 may
use. The application layer 102 may support a software appli-
cation that may directly interface with the user. As such, the
application layer 102 may implement protocols defined by
the software application. For example, the software applica-
tion may provide serves such as file transfers, electronic mail,
and the like.

Efficient Network Layer

Referring now to FIG. 5, in one embodiment, the network
layer 96 and the transport layer 98 may be configured in a
certain manner to form an efficient low power wireless per-
sonal network (ELoWPAN) 110. In one embodiment, the
ELoWPAN 110 may be based on an IEEE 802.15.4 network,
which may correspond to low-rate wireless personal area
networks (LR-WPANSs). The ELoWPAN 110 may specify
that the network layer 96 may route data between the devices
10 in the home environment 30 using a communication pro-
tocol based on Internet Protocol version 6 (IPv6). As such,
each device 10 may include a 128-bit IPv6 address that may

US 9,326,307 B2

17

provide each device 10 with a unique address to use to iden-
tify itself over the Internet, a local network around the home
environment 30, or the like.

In one embodiment, the network layer 96 may specity that
data may be routed between devices using Routing Informa-
tion Protocol-Next Generation (RIPng). RIPng is a routing
protocol that routes data via a wireless mesh network based
on a number of hops between the source node and the desti-
nation node. That is, RIPng may determine a route to the
destination node from the source node that employs the least
number of hops when determining how the data will be
routed. In addition to supporting data transfers via a wireless
mesh network, RIPng is capable of supporting IPv6 network-
ing traffic. As such, each device 10 may use a unique IPv6
address to identify itself and a unique IPv6 address to identify
a destination node when routing data. Additional details with
regard to how the RIPng may send data between nodes will be
described below with reference to FIG. 6.

As mentioned above, the network layer 96 may also pro-
vide a security protocol that may manage the integrity of the
data being transferred. Here, the efficient network layer may
secure data transferred between devices using a Datagram
Transport Layer Security (DTLS) protocol. Generally, Trans-
port Layer Security (TLS) protocol is commonly used to
protect data transfers via the Internet. However, in order for
the TLS protocol to be effective, the TLS protocol may trans-
port data using a reliable transport channel such as Transmis-
sion Control Protocol (TCP). DTLS provides a similar level
of security for transferred data while supporting unreliable
transport channels such as User Datagram Protocol (UDP).
Additional details with regard to the DTLS protocol will be
described below with reference to FIGS. 8 and 9.

The network layer 96 depicted in FIG. 5 is characterized
herein as the efficient network layer mentioned above. That is,
the efficient network layer routes IPv6 data using RIPng and
secures the routed data using the DTLS protocol. Since the
efficient network layer uses the DTLS protocol to secure data
transfer between devices, the transport layer 98 may support
TCP and UDP transfer schemes for the data.

Referring now to FIG. 6, FIG. 6 depicts a flowchart of a
method 120 that may be used for determining a routing table
for each device 10 in the wireless mesh network 80 of FIG. 3
using RIPng. The method 120 may be performed by each
device 10 in the home environment 30 such that each device
10 may generate a routing table that indicates how each node
in the wireless mesh network 80 may be connected to each
other. As such, each device 10 may independently determine
how to route data to a destination node. In one embodiment,
the processor 20 of the device 10 may perform the method
120 using the network interface 18. As such, the device 10
may send data associated with the sensor 12 or determined by
the processor 18 to other devices 10 in the home environment
30 via network interface 18.

The following discussion of the method 120 will be
described with reference to FIGS. 7A-7D to clearly illustrate
various blocks of the method 120. Keeping this in mind and
referring to both FIG. 6 and FIG. 7A, at block 122, the device
10 may send a request 132 to any other device 10 that may be
directly (i.e., zero hops) to the requesting device 10. The
request 132 may include a request for all of the routing infor-
mation from the respective device 10. For example, referring
to FIG. 7A, the device 10 at node 1 may send the request 132
to the device 10 at node 2 to send all of the routes (i.e., N2 ’s
routes) included in node 2’s memory.

At block 124, the requesting device 10 may receive a
message from the respective device 10 that may include all of
the routes included in the respective memory of the respective

10

15

20

25

30

35

40

45

50

55

60

65

18

device 10. The routes may be organized in a routing table that
may specify how each node in the wireless mesh network 80
may be connected to each other. That is, the routing table may
specify which intermediate nodes data may be transferred to
such that data from a source node to a destination node.
Referring back to the example above and to FIG. 7B, in
response to node 1’s request for N2 s routes, at block 124,
node 2 may send node 1 all of the routes (N2 ’s routes 144)
included in the memory or storage of node 2. In one embodi-
ment, each node of the wireless mesh network 80 may send
the request 132 to its adjacent node as shown in FIG. 7A. In
response, each node may then send its routes to its adjacent
node as shown in FIG. 7B. For instance, FIG. 7B illustrates
how each node sends its route data to each adjacent node as
depicted with N1°s routes 142, N2 ’s routes 144, N3 ’s routes
146, N4’s routes 148, N5 ’s routes 150, N6 ’s routes 152, N7
’s routes 154, N8 ’s routes 156, and N9 ’s routes 158.

Initially, each node may know the nodes in which it may
have a direct connection (i.e., zero hops). For example, ini-
tially, node 2 may just know that it is directly connected to
node 1, node 3, and node 4. However, after receiving N1’s
routes 142, N3 ’s routes 146, and N4’s routes 148, the pro-
cessor 20 of node 2 may build a routing table that includes all
of the information included with N1’s routes 142, N3 ’s
routes 146, and N4’s routes 148. As such, the next time node
2 receives a request for its routes or routing table (i.e., N2 ’s
routes 144), node 2 may send a routing table that includes
N1’s routes 142, N2 ’s routes, N3 ’s routes 146, and N4’s
routes 148.

Keeping this in mind and referring back to FIG. 6, at block
126, the requesting device 10 may update its local routing
table to include the routing information received from the
adjacent device 10. In certain embodiments, each device 10
may perform the method 120 periodically such that each
device 10 includes an updated routing table that characterizes
how each node in the wireless mesh network 80 may be
connected to each other. As mentioned above, each time the
method 120 is performed, each device 10 may receive addi-
tional information from its adjacent device 10 if the adjacent
device 10 updated its routing table with the information
received from its adjacent devices. As a result, each device 10
may understand how each node in the wireless mesh network
80 may be connected to each other.

FIG. 7C, for example, illustrates a routing table 172 that
may have been determined by the device 10 at node 1 using
the method 120. In this example, the routing table 172 may
specify each node in the wireless mesh network 80 as a
destination node, the intermediate nodes between node 1 and
each destination node, and a number of hops between node 1
and the destination node. The number of hops corresponds to
a number of times that the data being sent to the destination
node may be forwarded to an intermediate node before reach-
ing the destination node. When sending data to a particular
destination node, the RIPng routing scheme may select a
route that involves the least number of hops. For instance, if
node 1 intended to send data to node 9, the RIPng routing
scheme would route the data via nodes 2, 4, 5, and 8, which
includes four hops, as opposed to routing the data via nodes 2,
4,6, 7, and 8, include includes five hops.

By using the RIPng routing scheme, each device 10 may
independently determine how data should be routed to a
destination node. Conventional routing schemes such as
“Ripple” Routing Protocol (RPL) used in 6LoWPAN
devices, on the other hand, may route data through a central
node, which may be the only node that knows the structure of
the wireless mesh network. More specifically, the RPL pro-
tocol may create a wireless mesh network according to a

US 9,326,307 B2

19

directed acyclic graph (DAG), which may be structured as a
hierarchy. Located at the top of this hierarchy may include a
border router, which may periodically multicasts requests to
lower level nodes to determine a rank for each of the node’s
connections. In essence, when data is transferred from a
source node to a destination node, the data may be transferred
up the hierarchy of nodes and then back down to the destina-
tion node. In this manner, the nodes located higher up the
hierarchy may route data more often than the nodes located
lower in the hierarchy. Moreover, the border router of the RPL,
system may also be operating more frequently since it con-
trols how data will be routed via the hierarchy. In the conven-
tional RPL system, in contrast to the RIPng system taught
here, some nodes may route data on a more frequent basis
simply due to its location within the hierarchy and not due to
its location with respect to the source node and the destination
node. These nodes that route data more often under the RPL
system may consume more energy and thus may not be a
suitable to implement with the devices 10 in the home envi-
ronment 30 that operate using low power. Moreover, as men-
tioned above, if the border router or any other higher-level
node of the RPL system corresponds to the thermostat 46, the
increased data routing activity may increase the heat pro-
duced within the thermostat 46. As a result, the temperature
reading of the thermostat 46 may incorrectly represent the
temperature of the home environment 30. Since other devices
10 may perform specific operations based on the temperature
reading of the thermostat 46, and since the thermostat 46 may
send commands to various devices 10 based on its tempera-
ture reading, it may be beneficial to ensure that the tempera-
ture reading of the thermostat 46 is accurate.

In addition to ensuring that none of the devices 10 routes
data a disproportionate amount of times, by using the RIPng
routing scheme, new devices 10 may be added to the wireless
mesh network with minimum effort by the user. For example,
FIG. 7D illustrates a new node 10 being added to the wireless
mesh network 80. In certain embodiments, once the node 10
establishes a connection to the wireless mesh network 80
(e.g., via node 4), the device 10 that corresponds to node 10
may perform the method 120 described above to determine
how data may be routed to each node in the wireless mesh
network 80. If each node in the wireless mesh network 80 has
already performed the method 120 multiple times, the device
10 at node 10 may receive the entire routing structure of the
wireless mesh network 80 from the device 10 at node 4. In the
same manner, devices 10 may be removed from the wireless
mesh network 80 and each node may update its routing table
with relative ease by performing the method 120 again.

After establishing a routing scheme using the RIPng rout-
ing scheme, ELoWPAN 110 may employ a DTLS protocol to
secure data communications between each device 10 in the
home environment 30. As mentioned above, by using the
DTLS protocol instead of a TLS protocol, ELoWPAN 110
may enable the transport layer 98 to send data via TCP and
UDP. Although UDP may be generally more unreliable as
compared to TCP, UDP data transters employs a simple com-
munication scheme without having dedicated transmissions
channels or data paths set up prior to use. As such, new
devices 10 added to the wireless mesh network 80 may use
UDP data transfers to effectively communicate to other
devices 10 in the wireless mesh network more quickly. More-
over, UDP data transfers generally use less energy by the
device 10 that is sending or forwarding the data since there is
no guarantee of delivery. As such, the devices 10 may send
non-critical data (e.g., presence of a person in a room) using
the UDP data transfer, thereby saving energy within the
device 10. However, critical data (e.g., smoke alarm) may be

5

10

15

20

25

30

35

40

45

50

55

60

65

20

sent via TCP data transfer to ensure that the appropriate party
receives the data. To reiterate, using a DTLS security scheme
with ELoWPAN 110 may help facilitate UDP and TCP data
transfers.

Keeping the foregoing in mind, ELoWPAN 110 may
employ the DTLS protocol to secure the data communicated
between the devices 10. In one embodiment, the DTLS pro-
tocol may secure data transfers using a handshake protocol.
Generally, the handshake protocol may authenticate each
communicating device using a security certificate that may be
provided by each device 10. FIG. 8 illustrates an example of
a manufacturing process 190 that depicts how the security
certificate may be embedded within the device 10.

Referring to FIG. 8, a trusted manufacturer 192 of the
device 10 may be provided with a number of security certifi-
cates that it may use for each manufactured device. As such,
while producing a device 10 that may be used in the home
environment 30 and coupled to the wireless mesh network 80,
the trusted manufacturer 192 may embed a certificate 194 into
the device 10 during the manufacturing process 190. That is,
the certificate 194 may be embedded into the hardware of the
device 10 during manufacturing of the device 10. The certifi-
cate 194 may include a public key, a private key, or other
cryptographic data that may be used to authenticate different
communicating devices within the wireless mesh network 80.
As a result, once a user receives the device 10, the user may
integrate the device 10 into the wireless mesh network 80
without initializing or registering the device 10 with a central
security node or the like.

In conventional data communication security protocols
such as Protocol for Carrying Authentication for Network
Access (PANA) used in 6LoWPAN devices, each device 10
may authenticate itself with a specific node (i.e., authentica-
tion agent). As such, before data is transferred between any
two devices 10, each device 10 may authenticate itself with
the authentication agent node. The authentication agent node
may then convey the result of the authentication to an enforce-
ment point node, which may be co-located with the authen-
tication agent node. The enforcement point node may then
establish a data communication link between the two devices
10 if the authentications are valid. Moreover, in PANA, each
device 10 may communicate with each other via an enforce-
ment point node, which may verify that the authentication for
each device 10 is valid.

As such, by using the DTLS protocol rather than PANA to
secure data transfers between nodes, the efficient network
layer may avoid using an authorization agent node, an
enforcement point node, or both excessively. That is, no one
node using the efficient network layer may be processing
authentication data for each data transfer between nodes in
the wireless mesh network. As a result, the nodes using the
efficient network layer may conserve more energy as com-
pared to the authorization agent node or the enforcement
point node in the PANA protocol system.

Keeping this in mind, FIG. 9 illustrates an example hand-
shake protocol 200 that may be used between devices 10
when transferring data between each other. As shown in FIG.
9, the device 10 at node 1 may send a message 202 to the
device 10 at node 2. The message 202 may be a hello message
that may include cipher suites, hash and compression algo-
rithms, and a random number. The device 10 at node 2 may
then respond with a message 204, which may verity that the
device 10 at node 2 received the message 202 from the device
10 at node 1.

After establishing the connection between node 1 and node
2, the device at node 1 may again send the message 202 to the
device 10 atnode 2. The device 10 at node 2 may then respond

US 9,326,307 B2

21

with a message 208, which may include a hello message from
node 2, a certificate 194 from node 2, a key exchange from
node 2, and a certificate request for node 1. The hello message
in the message 208 may include cipher suites, hash and com-
pression algorithms, and a random number. The certificate
194 may be the security certificate embedded within the
device 10 by the trusted manufacturer 192 as discussed above
with reference to FIG. 8. The key exchange may include a
public key, a private key, or other cryptographic information
that may be used to determine a secret key for establishing a
communication channel between the two nodes. In one
embodiment, the key exchange may be stored in the certifi-
cate 194 of the corresponding device 10 located at the respec-
tive node.

Inresponseto the message 208, the device 10 at node 1 may
send message 210 that may include a certificate 194 from
node 1, a key exchange from node 1, a certificate verification
of node 2, and a change cipher spec from node 1. In one
embodiment, the device 10 at node 1 may use the certificate
194 of node 2 and the key exchange from node 1 to verify the
certificate 194 of node 2. That is, the device 10 at node 1 may
verify that the certificate 194 received from node 2 is valid
based on the certificate 194 of node 2 and the key exchange
from node 1. If the certificate 194 from node 2 is valid, the
device 10 at node 1 may send the change cipher spec message
to the device 10 at node 2 to announce that the communication
channel between the two nodes is secure.

Similarly, upon receiving the message 210, the device 10 at
node 2 may use the certificate 194 of node 1 and the key
exchange from node 2 to verify the certificate 194 of node 1.
That is, the device 10 at node 2 may verify that the certificate
194 received from node 1 is valid based on the certificate 194
of'node 1 and the key exchange from node 2. If the certificate
194 from node 1 is valid, the device 10 at node 2 may also
send the change cipher spec message to the device 10 at node
1 to announce that the communication channel between the
two nodes is secure.

After establishing that the communication channel is
secure, the device 10 at node 1 may send a group-wise net-
work key 214 to the device 10 at node 2. The group-wise
network key 214 may be associated with the ELoWPAN 110.
In this manner, as new devices join the ELoWPAN 110,
devices previously authorized to communicate within the
ELoWPAN 110 may provide the new devices access to the
ELoWPAN 110. That is, the devices previously authorized to
communicate within the ELoWPAN 110 may provide the
group-wise network key 214 to the new devices, which may
enable the new devices to communicate with other devices in
the ELoWPAN 110. For example, the group-wise network
key 214 may be used to communicate with other devices that
have been properly authenticated and that have previously
provided with the group-wise network key 214. In one
embodiment, once the change cipher spec message has been
exchanged between the device 10 at node 1 and the device 10
at node 2, identification information such as model number,
device capabilities, and the like may be communicated
between the devices. However, after the device 10 at node 2
receives the group-wise network key 214, additional infor-
mation such as data from sensors disposed on the device 10,
data analysis performed by the device 10, and the like may be
communicated between devices.

By embedding the security certificate within the device 10
during the manufacturing process, the device 10 may not
involve the user with establishing security or authentication
processes for the device 10. Moreover, since the device 10
may ensure that data is securely transferred between nodes
based on a handshake protocol as opposed to a central authen-

10

15

20

25

30

35

40

45

50

55

60

65

22

tication agent node, the security of the data transfers in the
wireless mesh network 80 may not rely on a single node for
security. Instead, the efficient network layer may ensure that
data may be securely transferred between nodes even when
some node becomes unavailable. As such, the efficient net-
work layer may be much less vulnerable to security issues
since it does not rely on a single node for securing data
messages.

Efficient Platform and/or Application Layers

Using the above-described ELowPAN 110 and/or any
other suitable IPv6 logical networks, efficient platform and/or
application layers may be used to generate a fabric of devices
in a home environment or similar environments. The fabric of
devices may enable many generally local devices to commu-
nicate, sharing data and information, invoking methods on
one another, parametrically providing software updates
through the network, and generally communicating messages
in an efficient, power-conscious way.

Fabric-Device Interconnection

As discussed above, a fabric may be implemented using
one or more suitable communications protocols, such as IPv6
protocols. In fact, the fabric may be partially or completely
agnostic to the underlying technologies (e.g., network types
or communication protocols) used to implement the fabric.
Within the one or more communications protocols, the fabric
may be implemented using one or more network types used to
communicatively couple electrical devices using wireless or
wired connections. For example, certain embodiments of the
fabric may include Ethernet, WiFi, 802.15.4, ZigBee,
ISA100.11a, WirelessHART, MiWi™, power-line networks,
and/or other suitable network types. Within the fabric devices
(e.g., nodes) can exchange packets of information with other
devices (e.g., nodes) in the fabric, either directly or via inter-
mediary nodes, such as intelligent thermostats, acting as IP
routers. These nodes may include manufacturer devices (e.g.,
thermostats and smoke detectors) and/or customer devices
(e.g., phones, tablets, computers, etc.). Additionally, some
devices may be “always on” and continuously powered using
electrical connections. Other devices may have partially
reduced power usage (e.g., medium duty cycle) using a
reduced/intermittent power connection, such as a thermostat
or doorbell power connection. Finally, some devices may
have a short duty cycle and run solely on battery power. In
other words, in certain embodiments, the fabric may include
heterogeneous devices that may be connected to one or more
sub-networks according to connection type and/or desired
power usage. FIGS. 10-12 illustrate three embodiments that
may be used to connect electrical devices via one or more
sub-networks in the fabric.

A. Single Network Topology

FIG. 10 illustrates an embodiment of the fabric 1000 hav-
ing a single network topology. As illustrated, the fabric 1000
includes a single logical network 1002. The network 1002
could include Ethernet, WiFi, 802.15.4, power-line networks,
and/or other suitable network types in the IPv6 protocols. In
fact, in some embodiments where the network 1002 includes
a WiFi or Ethernet network, the network 1002 may span
multiple WiFi and/or Ethernet segments that are bridged at a
link layer.

The network 1002 includes one or more nodes 1004, 1006,
1008, 1010,1012, 1014, and 1016, referred to collectively as
1004-1016. Although the illustrated network 1002 includes
seven nodes, certain embodiments of the network 1002 may
include one or more nodes interconnected using the network
1002. Moreover, if the network 1002 is a WiFi network, each

US 9,326,307 B2

23

of'the nodes 1004-1016 may be interconnected using the node
1016 (e.g., WiFi router) and/or paired with other nodes using
WiFi Direct (i.e., WiFi P2P).

B. Star Network Topology

FIG. 11 illustrates an alternative embodiment of fabric
1000 as a fabric 1018 having a star network topology. The
fabric 1018 includes a hub network 1020 that joins together
two periphery networks 1022 and 1024. The hub network
1020 may include a home network, such as WiFi/Ethernet
network or power line network. The periphery networks 1022
and 1024 may additional network connection types different
of different types than the hub network 1020. For example, in
some embodiments, the hub network 1020 may be a WiFi/
Ethernet network, the periphery network 1022 may include
an 802.15.4 network, and the periphery network 1024 may
include a power line network, a ZigBee® network, a
ISA100.11a network, a WirelessHART, network, or a
MiWi™ network. Moreover, although the illustrated embodi-
ment of the fabric 1018 includes three networks, certain
embodiments of the fabric 1018 may include any number of
networks, such as 2, 3, 4, 5, or more networks. In fact, some
embodiments of the fabric 1018 include multiple periphery
networks of the same type.

Although the illustrated fabric 1018 includes fourteen
nodes, each referred to individually by reference numbers
1024-1052, respectively, it should be understood that the
fabric 1018 may include any number of nodes. Communica-
tion within each network 1020, 1022, or 1024, may occur
directly between devices and/or through an access point, such
as node 1042 in a WiFi/Ethernet network. Communications
between periphery network 1022 and 1024 passes through the
hub network 1020 using inter-network routing nodes. For
example, in the illustrated embodiment, nodes 1034 and 1036
are be connected to the periphery network 1022 using a first
network connection type (e.g., 802.15.4) and to the hub net-
work 1020 using a second network connection type (e.g.,
WiF1i) while the node 1044 is connected to the hub network
1020 using the second network connection type and to the
periphery network 1024 using a third network connection
type (e.g., power line). For example, a message sent from
node 1026 to node 1052 may pass through nodes 1028, 1030,
1032, 1036, 1042, 1044, 1048, and 1050 in transit to node
1052.

C. Overlapping Networks Topology

FIG. 12 illustrates an alternative embodiment of the fabric
1000 as a fabric 1054 having an overlapping networks topol-
ogy. The fabric 1054 includes networks 1056 and 1058. As
illustrated, each of the nodes 1062, 1064, 1066, 1068, 1070,
and 1072 may be connected to each of the networks. In other
embodiments, the node 1072 may include an access point for
an Ethernet/WiFi network rather than an end point and may
not be present on either the network 1056 or network 1058,
whichever is not the Ethernet/ WiFi network. Accordingly, a
communication from node 1062 to node 1068 may be passed
through network 1056, network 1058, or some combination
thereof. In the illustrated embodiment, each node can com-
municate with any other node via any network using any
network desired. Accordingly, unlike the star network topol-
ogy of FIG. 11, the overlapping networks topology may com-
municate directly between nodes via any network without
using inter-network routing.

D. Fabric Network Connection to Services

In addition to communications between devices within the
home, a fabric (e.g., fabric 1000) may include services that
may be located physically near other devices in the fabric or
physically remote from such devices. The fabric connects to
these services through one or more service end points. FIG.

10

15

20

25

30

35

40

45

50

55

60

65

24

13 illustrates an embodiment of a service 1074 communicat-
ing with fabrics 1076, 1078, and 1080. The service 1074 may
include various services that may be used by devices in fab-
rics 1076, 1078, and/or 1080. For example, in some embodi-
ments, the service 1074 may be a time of day service that
supplies a time of day to devices, a weather service to provide
various weather data (e.g., outside temperature, sunset, wind
information, weather forecast, etc.), an echo service that
“pings” each device, data management services, device man-
agement services, and/or other suitable services. As illus-
trated, the service 1074 may include a server 1082 (e.g., web
server) that stores/accesses relevant data and passes the infor-
mation through a service end point 1084 to one or more end
points 1086 in a fabric, such as fabric 1076. Although the
illustrated embodiment only includes three fabrics with a
single server 1082, it should be appreciated that the service
1074 may connect to any number of fabrics and may include
servers in addition to the server 1082 and/or connections to
additional services.

In certain embodiments, the service 1074 may also connect
to a consumer device 1088, such as a phone, tablet, and/or
computer. The consumer device 1088 may be used to connect
to the service 1074 via a fabric, such as fabric 1076, an
Internet connection, and/or some other suitable connection
method. The consumer device 1088 may be used to access
data from one or more end points (e.g., electronic devices) in
a fabric either directly through the fabric or via the service
1074. In other words, using the service 1074, the consumer
device 1088 may be used to access/manage devices in a fabric
remotely from the fabric.

E. Communication Between Devices in a Fabric

As discussed above, each electronic device or node may
communicate with any other node in the fabric, either directly
or indirectly depending upon fabric topology and network
connection types. Additionally, some devices (e.g., remote
devices) may communicate through a service to communi-
cate with other devices in the fabric. FIG. 14 illustrates an
embodiment of a communication 1090 between two devices
1092 and 1094. The communication 1090 may span one or
more networks either directly or indirectly through additional
devices and/or services, as described above. Additionally, the
communication 1090 may occur over an appropriate commu-
nication protocol, such as IPv6, using one or more transport
protocols. For example, in some embodiments the communi-
cation 1090 may include using the transmission control pro-
tocol (TCP) and/or the user datagram protocol (UDP). In
some embodiments, the device 1092 may transmit a first
signal 1096 to the device 1094 using a connectionless proto-
col (e.g., UDP). In certain embodiments, the device 1092 may
communicate with the device 1094 using a connection-ori-
ented protocol (e.g., TCP). Although the illustrated commu-
nication 1090 is depicted as a bi-directional connection, in
some embodiments, the communication 1090 may be a uni-
directional broadcast.

i. Unique Local Address

As discussed above, data transmitted within a fabric
received by a node may be redirected or passed through the
node to another node depending on the desired target for the
communication. In some embodiments, the transmission of
the data may be intended to be broadcast to all devices. In
such embodiments, the data may be retransmitted without
further processing to determine whether the data should be
passed along to another node. However, some data may be
directed to a specific endpoint. To enable addressed messages
to be transmitted to desired endpoints, nodes may be assigned
identification information.

US 9,326,307 B2

25

Each node may be assigned a set of link-local addresses
(LLA), one assigned to each network interface. These LLLAs
may be used to communicate with other nodes on the same
network. Additionally, the LLLAs may be used for various
communication procedures, such as IPv6 Neighbor Discov-
ery Protocol. In addition to LLLAs, each node may be assigned
a unique local address (ULA). In some embodiments, this
may be referred to as an Extended Unique Local Address
(EULA) because it contains information regarding the fabric
of'devices as well as a preferred network over which to reach
a device through the fabric.

FIG. 15 illustrates an embodiment of a unique local address
(ULA) 1098 that may be used to address each node in the
fabric. In certain embodiments, the ULA 1098 may be for-
matted as an [Pv6 address format containing 128 bits divided
into a global ID 1100, a subnet ID 1102, and an interface ID
1104. The global ID 1100 includes 40 bits and the subnet ID
1102 includes 16 bits. The global ID 1100 and subnet ID 1102
together form a fabric ID 1103 for the fabric.

The fabric ID 1103 is a unique 64-bit identifier used to
identify a fabric. The fabric ID 1103 may be generated at
creation of the associated fabric using a pseudo-random algo-
rithm. For example, the pseudo-random algorithm may 1)
obtain the current time of day in 64-bit NTP format, 2) obtain
the interface ID 1104 for the device, 3) concatenate the time
of day with the interface ID 1104 to create a key, 4) compute
and SHA-1 digest on the key resulting in 160 bits, 5) use the
least significant 40 bits as the global ID 1100, and 6) concat-
enate the UL A and set the least significant bit to 1 to create the
fabric ID 1103. In certain embodiments, once the fabric 1D
1103 is created with the fabric, the fabric ID 1103 remains
until the fabric is dissolved.

The global 1D 1100 identifies the fabric to which the node
belongs. The subnet ID 1102 identifies logical networks
within the fabric. The subnet ID F3 may be assigned mono-
tonically starting at one with the addition of each new logical
network to the fabric. For example, a WiFi network may be
identified with a hex value of 0x01, and a later connected
802.15.4 network may be identified with a hex value of 0x02
continuing on incrementally upon the connection of each new
network to the fabric.

Finally, the ULA 1098 includes an interface ID 1104 that
includes 64 bits. The interface ID 1104 may be assigned using
a globally-unique 64-bit identifier according to the IEEE
EUI-64 standard. For example, devices with IEEE 802 net-
work interfaces may derive the interface ID 1104 using a
burned-in MAC address for the devices “primary interface.”
In some embodiments, the designation of which interface is
the primary interface may be determined arbitrarily. In other
embodiments, an interface type (e.g., WiFi) may be deemed
the primary interface, when present. If the MAC address for
the primary interface of a device is 48 bits rather than 64-bit,
the 48-bit MAC address may be converted to a EUI-64 value
via encapsulation (e.g., organizationally unique identifier
encapsulating). In consumer devices (e.g., phones or comput-
ers), the interface ID 1104 may be assigned by the consumer
devices’ local operating systems.

ii. Routing Transmissions Between Logical Networks

As discussed above in relation to a star network topology,
inter-network routing may occur in communication between
two devices across logical networks. In some embodiments,
inter-network routing is based on the subnet ID 1102. Each
inter-networking node (e.g., node 1034 of FIG. 11) may
maintain a list of other routing nodes (e.g., node B 14 of FI1G.
11) on the hub network 1020 and their respective attached
periphery networks (e.g., periphery network 1024 of FIG.
11). When a packet arrives addressed to a node other than the

10

15

20

25

30

35

40

45

50

55

60

65

26

routing node itself, the destination address (e.g., address for
node 1052 of FIG. 11) is compared to the list of network
prefixes and a routing node (e.g., node 1044) is selected that
is attached to the desired network (e.g., periphery network
1024). The packet is then forwarded to the selected routing
node. If multiple nodes (e.g., 1034 and 1036) are attached to
the same periphery network, routing nodes are selected in an
alternating fashion.

Additionally, inter-network routing nodes may regularly
transmit Neighbor Discovery Protocol (NDP) router adver-
tisement messages on the hub network to alert consumer
devices to the existence of the hub network and allow them to
acquire the subnet prefix. The router advertisements may
include include one or more route information options to
assist in routing information in the fabric. For example, these
route information options may inform consumer devices of
the existence of the periphery networks and how to route
packets the periphery networks.

In addition to, or in place of route information options,
routing nodes may act as proxies to provide a connection
between consumer devices and devices in periphery net-
works, such as the process 1105 as illustrated in FIG. 16. As
illustrated, the process 1105 includes each periphery network
device being assigned a virtual address on the hub network by
combining the subnet ID 1102 with the interface ID 1104 for
the device on the periphery network (block 1106). To proxy
using the virtual addresses, routing nodes maintain a list of all
periphery nodes in the fabric that are directly reachable via
one of its interfaces (block 1108). The routing nodes listen on
the hub network for neighbor solicitation messages request-
ing the link address of a periphery node using its virtual
address (block 1110). Upon receiving such a message, the
routing node attempts to assign the virtual address to its hub
interface after a period of time (block 1112). As part of the
assignment, the routing node performs duplicate address
detection so as to block proxying of the virtual address by
more than one routing node. After the assignment, the routing
node responds to the neighbor solicitation message and
receives the packet (block 1114). Upon receiving the packet,
the routing node rewrites the destination address to be the real
address of the periphery node (block 1116) and forwards the
message to the appropriate interface (block 1118).

iii. Consumer Devices Connecting to a Fabric

To join a fabric, a consumer device may discover an
address of a node already in the fabric that the consumer
device wants to join. Additionally, if the consumer device has
been disconnected from a fabric for an extended period of
time may need to rediscover nodes on the network if the fabric
topology/layout has changed. To aid in discovery/rediscov-
ery, fabric devices on the hub network may publish Domain
Name System-Service Discovery (DNS-SD) records via
mDNS that advertise the presence of the fabric and provide
addresses to the consumer device

Data Transmitted in the Fabric

After creation of a fabric and address creation for the
nodes, data may be transmitted through the fabric. Data
passed through the fabric may be arranged in a format com-
mon to all messages and/or common to specific types of
conversations in the fabric. In some embodiments, the mes-
sage format may enable one-to-one mapping to JavaScript
Object Notation (JSON) using a TLV serialization format
discussed below. Additionally, although the following data
frames are described as including specific sizes, it should be
noted that lengths of the data fields in the data frames may be
varied to other suitable bit-lengths.

US 9,326,307 B2

27

A. Security

Along with data intended to be transferred, the fabric may
transfer the data with additional security measures such as
encryption, message integrity checks, and digital signatures.
In some embodiments, a level of security supported for a
device may vary according to physical security of the device
and/or capabilities of the device. In certain embodiments,
messages sent between nodes in the fabric may be encrypted
using the Advanced Encryption Standard (AES) block cipher
operating in counter mode (AES-CTR) with a 128-bit key. As
discussed below, each message contains a 32-bit message id.
The message id may be combined with a sending nodes id to
form a nonce for the AES-CTR algorithm. The 32-bit counter
enables 4 billion messages to be encrypted and sent by each
node before a new key is negotiated.

In some embodiments, the fabric may insure message
integrity using a message authentication code, such as
HMAC-SHA-1, that may be included in each encrypted mes-
sage. In some embodiments, the message authentication code
may be generated using a 160-bit message integrity key that is
paired one-to-one with the encryption key. Additionally, each
node may check the message id of incoming messages against
a list of recently received ids maintained on a node-by-node
basis to block replay of the messages.

B. Tag Length Value (TLV) Formatting

To reduce power consumption, it is desirable to send at
least a portion of the data sent over the fabric that compactly
while enabling the data containers to flexibly represents data
that accommodates skipping data that is not recognized or
understood by skipping to the next location of data that is
understood within a serialization of the data. In certain
embodiments, tag-length-value (TLV) formatting may be
used to compactly and flexibly encode/decode data. By stor-
ing at least a portion of the transmitted data in TLV, the data
may be compactly and flexibly stored/sent along with low
encode/decode and memory overhead, as discussed below in
reference to Table 7. In certain embodiments, TLV may be
used for some data as flexible, extensible data, but other
portions of data that is not extensible may be stored and sent
in a understood standard protocol data unit (PDU).

Data formatted in a TLV format may be encoded as TLV
elements of various types, such as primitive types and con-
tainer types. Primitive types include data values in certain
formats, such as integers or strings. For example, the TLV
format may encode: 1, 2, 3, 4, or 8 byte signed/unsigned
integers, UTF-8 strings, byte strings, single/double-precision
floating numbers (e.g., IEEE 754-1985 format), boolean,
null, and other suitable data format types. Container types
include collections of elements that are then sub-classified as
container or primitive types. Container types may be classi-
fied into various categories, such as dictionaries, arrays, paths
or other suitable types for grouping TLV elements, known as
members. A dictionary is a collection of members each hav-
ing distinct definitions and unique tags within the dictionary.
An array is an ordered collection of members with implied
definitions or no distinct definitions. A path is an ordered
collection of members that described how to traverse a tree of
TLV elements.

As illustrated in FIG. 11, an embodiment of a TLV packet
1120 includes three data fields: a tag field 1122, a length field
1124, and a value field 1126. Although the illustrated fields
1122,1124, and 1126 are illustrated as approximately equiva-
lent in size, the size of each field may be variable and vary in
size in relation to each other. In other embodiments, the TLV
packet 1120 may further include a control byte before the tag
field 1122.

10

15

20

25

30

35

40

45

50

55

60

65

28

In embodiments having the control byte, the control byte
may be sub-divided into an element type field and a tag
control field. In some embodiments, the element type field
includes 5 lower bits of the control byte and the tag control
field occupies the upper 3 bits. The element type field indi-
cates the TLV element’s type as well as the how the length
field 1124 and value field 1126 are encoded. In certain
embodiments, the element type field also encodes Boolean
values and/or null values for the TLV. For example, an
embodiment of an enumeration of element type field is pro-
vided in Table 1 below.

TABLE 1

Example element type field values.

-~
=N
w
N
w
S}
—
=3

Signed Integer, | byte value value
Signed Integer, 2 byte value
Signed Integer, 4 byte value
Signed Integer, & byte value
Unsigned Integer, 1 byte value
Unsigned Integer, 2 byte value
Unsigned Integer, 4 byte value
Unsigned Integer, 8 byte value
Boolean False

Boolean True

Floating Point Number, 4 byte value
Floating Point Number, & byte value
UTF8-String, 1 byte length
UTF8-String, 2 byte length
UTF8-String, 4 byte length
UTF8-String, 8 byte length

Byte String, 1 byte length

Byte String, 2 byte length

Byte String, 4 byte length

Byte String, 8 byte length

Null

Dictionary

Array

Path

End of Container

R R R R R R, 00 000000000000 00
—F 00000000 RRRHRRERERERPROOOO0O0O OO
OR PP, O0O0ORRRPHOOOORRRHOOOO
O R, OO, RO O R R OOR R OORROOR R, OO
O~ OR OO OROFRORORORORORORO

The tag control field indicates a form of the tag in the tag field
1122 assigned to the TLV element (including a zero-length
tag). Examples, of tag control field values are provided in
Table 2 below.

TABLE 2

Example values for tag control field.

7 6 5 4 3 2 1 0

o 0 o0 Anonymous, O bytes

o 0 1 Context-specific Tag, 1 byte
o 1 0 Core Profile Tag, 2 bytes

o 1 1 Core Profile Tag, 4 bytes

1 0 0 Implicit Profile Tag, 2 bytes
1 0 1 Implicit Profile Tag, 4 bytes
1 1 0 Fully-qualified Tag, 6 bytes
1 1 1 Fully-qualified Tag, 8 bytes

In other words, in embodiments having a control byte, the
control byte may indicate a length of the tag.

In certain embodiments, the tag field 1122 may include
zero to eight bytes, such as eight, sixteen, thirty two, or sixty
fourbits. In some embodiments, the tag of the tag field may be
classified as profile-specific tags or context-specific tags. Pro-
file-specific tags identify elements globally using a vendor Id,
a profile Id, and/or tag number as discussed below. Context-
specific tags identify TLV elements within a context of a
containing dictionary element and may include a single-byte

US 9,326,307 B2

29

tag number. Since context-specific tags are defined in context
of their containers, a single context-specific tag may have
different interpretations when included in different contain-
ers. In some embodiments, the context may also be derived
from nested containers.

In embodiments having the control byte, the tag length is
encoded in the tag control field and the tag field 1122 includes
apossible three fields: a vendor Id field, a profile Id field, and
atag number field. In the fully-qualified form, the encoded tag
field 1122 includes all three fields with the tag number field
including 16 or 32 bits determined by the tag control field. In
the implicit form, the tag includes only the tag number, and
the vendor Id and profile number are inferred from the pro-
tocol context of the TLV element. The core profile form
includes profile-specific tags, as discussed above. Context-
specific tags are encoded as a single byte conveying the tag
number. Anonymous elements have zero-length tag fields
1122.

In some embodiments without a control byte, two bits may
indicate a length of the tag field 1122, two bits may indicate a
length of the length field 1124, and four bits may indicate a
type of information stored in the value field 1126. An example
of possible encoding for the upper 8 bits for the tag field is
illustrated below in Table 3.

TABLE 3

Tag field of a TLV packet

Byte
0
7 6 5 4 3 2 1 0 Description
0 O — — — — — — Tagisg8bits
0 1 — — — — — — Tagis16bits
1 O — — — — — — Tagis32bits
1 1 — — — — Tagis64bits

Length is 8 bits

Length is 16 bits
Length is 32 bits
Length is 64 bits

— — 0 0 0 0 Boolean

— — 0 0 0 1 Fixed 8-bit Unsigned
— — 0 0 1 0 Fixed 8-bit Signed

— — 0 0 1 1 Fixed 16-bit Unsigned
— — 0 1 0 0 Fixed 16-bit Signed
— — 0 1 0 1 Fixed 32-bit Unsigned
— — 0 1 1 0 Fixed 32-bit Signed
— — 0 1 1 1 Fixed 64-bit Unsigned
— — 1 0 0 0 Fixed 64-bit Signed
— — 1 0 0 1 32-bit Floating Point
— — 1 0 1 0 64-bit Floating Point
— — 1 0 1 1 UTF-8 String

— — 1 1 0 0 Opaque Data

— — 1 1 0 1 Container

As illustrated in Table 3, the upper 8 bits of the tag field 1122
may be used to encode information about the tag field 1122,
length field 1124, and the value field 1126, such that the tag
field 112 may be used to determine length for the tag field 122
and the length fields 1124. Remaining bits in the tag field
1122 may be made available for user-allocated and/or user-
assigned tag values.

The length field 1124 may include eight, sixteen, thirty
two, or sixty four bits as indicated by the tag field 1122 as
illustrated in Table 3 or the element field as illustrated in Table
2. Moreover, the length field 1124 may include an unsigned
integer that represents a length of the encoded in the value
field 1126. In some embodiments, the length may be selected
by a device sending the TLV element. The value field 1126
includes the payload data to be decoded, but interpretation of
the value field 1126 may depend upon the tag length fields,

5

10

15

20

25

30

40

50

55

60

65

30

and/or control byte. For example, a TLV packet without a
control byte including an 8 bit tag is illustrated in Table 4
below for illustration.

TABLE 4

Example of a TLV packet including an 8-bit tag

Tag Length Value Description
0x0d 0x24

0x09 0x04 0x42 95 00 00 74.5

0x09 0x04 0x42 98 66 66 76.2

0x09 0x04 0x42 94 99 9a 74.3

0x09 0x04 0x42 98 99 9a 76.3

0x09 0x04 0x42 953333 74.6

0x09 0x04 0x42 98 33 33 76.1

As illustrated in Table 4, the first line indicates that the tag
field 1122 and the length field 1124 each have a length of 8
bits. Additionally, the tag field 1122 indicates that the tag type
is for the first line is a container (e.g., the TLV packet). The tag
field 1124 for lines two through six indicate that each entry in
the TLV packet has a tag field 1122 and length field 1124
consisting of 8 bits each. Additionally, the tag field 1124
indicates that each entry in the TLV packet has a value field
1126 that includes a 32-bit floating point. Each entry in the
value field 1126 corresponds to a floating number that may be
decoded using the corresponding tag field 1122 and length
field 1124 information. As illustrated in this example, each
entry in the value field 1126 corresponds to a temperature in
Fahrenheit. As can be understood, by storing data in a TLV
packet as described above, data may be transferred compactly
while remaining flexible for varying lengths and information
as may be used by different devices in the fabric. Moreover, in
some embodiments, multi-byte integer fields may be trans-
mitted in little-endian order or big-endian order.

By transmitting TLV packets in using an order protocol
(e.g., little-endian) that may be used by sending/receiving
device formats (e.g., JSON), data transferred between nodes
may be transmitted in the order protocol used by at least one
of'the nodes (e.g., little endian). For example, if one or more
nodes include ARM or ix86 processors, transmissions
between the nodes may be transmitted using little-endian byte
ordering to reduce the use of byte reordering. By reducing the
inclusion of byte reordering, the TLV format enable devices
to communicate using less power than a transmission that
uses byte reordering on both ends of the transmission. Fur-
thermore, TLV formatting may be specified to provide a one-
to-one translation between other data storage techniques,
such as JSON+ Extensible Markup Language (XML). As an
example, the TLV format may be used to represent the fol-
lowing XML Property List:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0/EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>OfflineMode</key>
<false/>
<key>Network</key>
<dict>
<key>IPv4</key>
<dict>
<key>Method</key>
<string>dhep</string>
</diet>
<key>IPv6</key>
<dict>

US 9,326,307 B2

-continued -continued
<key>Method</key> . . .
< >998- >
<string>auto</string> string>998-3 Alpine Ter</string
</dict> 5 <key>EPANID</key>
</diet>
<data> < >
<key>Technologies</key> data>3939382d3320416c70696e6520546572</data
<dict> <key>Frequency</key>
<key>wifi</key> . .
< > < >
<dict> integer>2412</integer
<key>Enabled</key> <key>AutoConnect</key>
<true/> 10
<key>Devices</key> <true/>
<dict> <key>Favorite</key>
<k‘.3y>Wlﬁ71 8b4300008b027</key> <true/>
<dict>
<key>Enabled</key> <key>Error</key>
<true/> 15 .
<Jdict> <string/>
</dict> <key>Network</key>
<key>Services</key> <dict/>
<array>
<string>wifi_18b4300008b027_3939382d33204 </dict>
16¢70696652054657 272616365</string™> 20 <Jdict>
</array>
</dict> </dict>
<key>R02.15.4</key> .
<diet> </plist
<key>Enabled</key>
<true/> 25
f;fg;DeVlcesq key> As an example, the above property list may be represented in
<key>802.15.4_18b43000000002facd</key> tags of the above described TLV format (without a control
<dict> byte) according to Table 5 below.
<key>Enabled</key>
<true/>
</dict> 30 TABLE 5
</dict>
<key>Services</key> . Lo
<artay> Example representation of the XML Property List in TLV format
<string>802.15.4_18b43000000002fac4_3
939382d3320416¢70696e6520546572</string> XML Key Tag Type Tag Number
</array> 35
</diet>
</dict> OfflineMode Boolean 1
<key>Services</key> .
<dict> IPv4 Container 3
<key>wifi_18b4300008b027_3939382d3320416¢70696¢6520546572 IPv6 Container 4
72616365</key> .
40
<dict> Method String 5
<key>Name</key> Technologies Container 6
<string>998-3 Alpine Terrace</string™> _— .
<key>SSID</key> WiFi Container 7
<data>3939382d3320416c70696e652054657272616365 802.15.4 Container 8
<data> Enabled Bool. 9
<key>Frequency</key> 45 nable colean
<integer>2462</integer> Devices Container 10
<key>AutoConnect</key> .
<true/> D String 11
<key>Favorite</key> Services Container 12
Struel> N Stri 13
<key>Error</key> 50 ame tring
<string/> SSID Data 14
<key>Network</key>
dive EPANID Data 15
<key>IPv4</key> Frequency 16-bit Unsigned 16
<dict> AutoConnect Bool 17
<key>DHCP</key> 55 utoConnec oolean
<dict> Favorite Boolean 18
<key>LastAddress</key> Ertor String 19
<data>0a02001e</data>
</dict> DHCP String 20
</dict> LastAddress Data 21
<key>IPv6</key> 60 . .
<dict/> Device Container 22
</dict> Service Container 23
</diet>
<key>802.15.4_18b43000000002fac4_3939382d3320416c70696e
6520546572</key>
<dict> 65 Similarly, Table 6 illustrates an example of literal tag, length,
<key>Name</key> and value representations for the example XML Property

List.

US 9,326,307 B2

33
TABLE 6

34

Example of literal values for tag, length. and value fields for XMI Property List

Tag Length Value Description

0x40 01 0x01 0 OfflineMode

0x4d 02 0x14 Network

0x4d 03 0x07 Network.IPv4

0x4b 05 0x04 “dhep” Network.IPv4.Method

0x4d 04 0x07 Network.IPv6

0x4b 05 0x04 “auto” Network.IPv6.Method

0x4d 06 0xd6 Technologies

0x4d 07 0x65 Technologies.wifi

0x40 09 0x01 1 Technologies.wifi.Enabled

0x4d 0a 0OxSe Technologies.wifi.Devices

0x4d 16 0x5b Technologies.wifi.Devices.Device.[0]

Ox4b Ob 0x13 “wifi_18b43...” Technologies.wifi.Devices. Device.[0].ID

0x40 09 0x01 1 Technologies.wifi.Devices.Device.[0].Enabled
0x4d Oc 0x3e Technologies.wifi.Devices.Device.[0].Services
0x0b 0x 3¢ “wifi_18b43...” Technologies.wifi.Devices.Device.[0].Services.[0]
0x4d 08 0x6b Technologies.802.15.4

0x40 09 0x01 1 Technologies.802.15.4.Enabled

0x4d 0a 0x64 Technologies.802.15.4.Devices

0x4d 16 0x61 Technologies.802.15.4.Devices.Device.[0]
0x4b 0b Oxla “802.15.4_18..” Technologies.802.15.4.Devices.Device.[0].ID
0x40 09 0x01 1 Technologies.802.15.4.Devices.Device.[0].Enabled
0x4d Oc 0x3d Technologies.802.15.4.Devices.Device.[0].Services
0x0b 0x 3b “802.15.4_18..” Technologies.802.15.4.Devices.Device.[0].Services.[0]
0x4d Oc Oxcb Services

0x4d 17 0x75 Services. Service.[0]

Ox4b Ob 0x13 “wifi_18b43...” Services.Service.[0].ID

Ox4b 0d 0x14 “998-3Alp...” Services.Service.[0].Name

Ox4c Of 0x28 3939382d... Services.Service.[0].SSID

0x45 10 0x02 2462 Services.Service.[0].Frequency

0x40 11 0x01 1 Services. Service.[0].AutoConnect

0x40 12 0x01 1 Services.Service.[0].Favorite

0x4d 02 0x0d Services. Service.[0].Network

0x4d 03 0x0a Services.Service.[0].Network. IPv4

0x4d 14 0x07 Services.Service.[0].Network.JPv4. DHCP

0x45 15 0x04 0x0a02001e Services.Service.[0].Network.JPv4. LastAddress
0x4d 17 0x50 Services.Service.[1]

0x4b 0b Oxla “802.15.4_18..7 Services.Service.[1].ID

Ox4c 0d 0x10 “998-3Alp...” Services.Service.[1].Name

Ox4c Of 0x10 3939382d... Services.Service.[1].EPANID

0x45 10 0x02 2412 Services.Service.[1].Frequency

0x40 11 0x01 1 Services.Service.[1].AutoConnect

0x40 12 0x01 1 Services.Service.[1].Favorite

The TLV format enables reference of properties that may also
be enumerated with XML, but does so with a smaller storage
size. For example, Table 7 illustrates a comparison of data
sizes of the XML Property List, a corresponding binary prop-
erty list, and the TLV format.

TABLE 7

Comparison of the sizes of property list data sizes.

List Type Size in Bytes Percentage of XML Size
XML 2,199 —

Binary 730 -66.8%

TLV 450 -79.5%

By reducing the amount of data used to transfer data, the
TLV format enables the fabric 1000 transfer data to and/or
from devices having short duty cycles due to limited power
(e.g., battery supplied devices). In other words, the TLV for-
mat allows flexibility of transmission while increasing com-
pactness of the data to be transmitted.

C. General Message Protocol

In addition to sending particular entries of varying sizes,
data may be transmitted within the fabric using a general
message protocol that may incorporate TLV formatting. An
embodiment of a general message protocol (GMP) 1128 is

45

50

55

60

65

illustrated in FIG. 18. In certain embodiments, the general
message protocol (GMP) 1128 may be used to transmit data
within the fabric. The GMP 1128 may be used to transmit data
via connectionless protocols (e.g., UDP) and/or connection-
oriented protocols (e.g., TCP). Accordingly, the GMP 1128
may flexibly accommodate information that is used in one
protocol while ignoring such information when using another
protocol. Moreover, the GMP 1226 may enable omission of
fields that are not used in a specific transmission. Data that
may be omitted from one or more GMP 1226 transfers is
generally indicated using grey borders around the data units.
In some embodiments, the multi-byte integer fields may be
transmitted in a little-endian order or a big-endian order.

i. Packet Length

In some embodiments, the GMP 1128 may include a
Packet Length field 1130. In some embodiments, the Packet
Length field 1130 includes 2 bytes. A value in the Packet
Length field 1130 corresponds to an unsigned integer indi-
cating an overall length of the message in bytes, excluding the
Packet Length field 1130 itself. The Packet Length field 1130
may be present when the GMP 1128 is transmitted over a TCP
connection, but when the GMP 1128 is transmitted over a
UDP connection, the message length may be equal to the
payload length of the underlying UDP packet obviating the
Packet Length field 1130.

US 9,326,307 B2

35

ii. Message Header

The GMP 1128 may also includes a Message Header 1132
regardless of whether the GMP 1128 is transmitted using TCP
or UDP connections. In some embodiments, the Message
Header 1132 includes two bytes of data arranged in the format
illustrated in FIG. 19. As illustrated in FIG. 19, the Message
Header 1132 includes a Version field 1156. The Version field
1156 corresponds to a version of the GMP 1128 that is used to
encode the message. Accordingly, as the GMP 1128 is
updated, new versions of the GMP 1128 may be created, but
each device in a fabric may be able to receive a data packet in
any version of GMP 1128 known to the device. In addition to
the Version field 1156, the Message Header 1132 may include
an S Flag field 1158 and a D Flag 1160. The S Flag 1158 is a
single bit that indicates whether a Source Node Id (discussed
below) field is included in the transmitted packet. Similarly,
the D Flag 1160 is a single bit that indicates whether a Des-
tination Node Id (discussed below) field is included in the
transmitted packet.

The Message Header 1132 also includes an Encryption
Type field 1162. The Encryption Type field 1162 includes
four bits that specify which type of encryption/integrity
checking applied to the message, if any. For example, 0x0
may indicate that no encryption or message integrity check-
ing is included, but a decimal 0x1 may indicate that AES-128-
CTR encryption with HMAC-SHA-1 message integrity
checking is included.

Finally, the Message Header 1132 further includes a Sig-
nature Type field 1164. The Signature Type field 1164
includes four bits that specify which type of digital signature
is applied to the message, if any. For example, 0x0 may
indicate that no digital signature is included in the message,
but 0x1 may indicate that the Elliptical Curve Digital Signa-
ture Algorithm (ECDSA) with Prime256v1 elliptical curve
parameters is included in the message.

iii. Message Id

Returning to FIG. 18, the GMP 1128 also includes a Mes-
sage Id field 1134 that may be included in a transmitted
message regardless of whether the message is sent using TCP
or UDP. The Message 1Id field 1134 includes four bytes that
correspond to an unsigned integer value that uniquely iden-
tifies the message from the perspective of the sending node. In
some embodiments, nodes may assign increasing Message Id
1134 values to each message that they send returning to zero
after reaching 232 messages.

iv. Source Node Id

In certain embodiments, the GMP 1128 may also include a
Source Node Id field 1136 that includes eight bytes. As dis-
cussed above, the Source Node Id field 1136 may be present
in a message when the single-bit S Flag 1158 in the Message
Header 1132 is set to 1. In some embodiments, the Source
Node Id field 1136 may contain the Interface ID 1104 of the
ULA 1098 or the entire ULA 1098. In some embodiments, the
bytes of the Source Node Id field 1136 are transmitted in an
ascending index-value order (e.g., EUI[0] then EUI[1] then
EUI[2] then EUI[3], etc.).

v. Destination Node Id

The GMP 1128 may include a Destination Node Id field
1138 that includes eight bytes. The Destination Node Id field
1138 is similar to the Source Node 1d field 1136, but the
Destination Node Id field 1138 corresponds to a destination
node for the message. The Destination Node Id field 1138
may be present in a message when the single-bit D Flag 1160
in the Message Header 1132 is set to 1. Also similar to the
Source Node Id field 1136, in some embodiments, bytes of the

10

15

20

25

30

35

40

45

50

55

60

65

36

Destination Node Id field 1138 may be transmitted in an
ascending index-value order (e.g., EUI[0] then EUI[1] then
EUI[2] then EUI[3], etc.).

vi. Key Id

In some embodiments, the GMP 1128 may include a Key
1d field 1140. In certain embodiments, the Key Id field 1140
includes two bytes. The Key Id field 1140 includes an
unsigned integer value that identifies the encryption/message
integrity keys used to encrypt the message. The presence of
the Key Id field 1140 may be determined by the value of
Encryption Type field 1162 of the Message Header 1132. For
example, in some embodiments, when the value for the
Encryption Type field 1162 of the Message Header 1132 is
0x0, the Key Id field 1140 may be omitted from the message.

An embodiment of the Key Id field 1140 is presented in
FIG. 20. In the illustrated embodiment, the Key 1d field 1140
includes a Key Type field 1166 and a Key Number field 1168.
In some embodiments, the Key Type field 1166 includes four
bits. The Key Type field 1166 corresponds to an unsigned
integer value that identifies a type of encryption/message
integrity used to encrypt the message. For example, in some
embodiments, if the Key Type field 1166 is 0x0, the fabric key
is shared by all or most of the nodes in the fabric. However, if
the Key Type field 1166 is Ox1, the fabric key is shared by a
pair of nodes in the fabric.

The Key 1d field 1140 also includes a Key Number field
1168 that includes twelve bits that correspond to an unsigned
integer value that identifies a particular key used to encrypt
the message out of a set of available keys, either shared or
fabric keys.

vii. Payload Length

In some embodiments, the GMP 1128 may include a Pay-
load Length field 1142. The Payload Length field 1142, when
present, may include two bytes. The Payload Length field
1142 corresponds to an unsigned integer value that indicates
a size in bytes of the Application Payload field. The Payload
Length field 1142 may be present when the message is
encrypted using an algorithm that uses message padding, as
described below in relation to the Padding field.

viii. Initialization Vector

In some embodiments, the GMP 1128 may also include an
Initialization Vector (IV) field 1144. The IV field 1144, when
present, includes a variable number of bytes of data. The IV
field 1144 contains cryptographic IV values used to encrypt
the message. The IV field 1144 may be used when the mes-
sage is encrypted with an algorithm that uses an IV. The
length of the 1V field 1144 may be derived by the type of
encryption used to encrypt the message.

ix. Application Payload

The GMP 1128 includes an Application Payload field
1146. The Application Payload field 1146 includes a variable
number of bytes. The Application Payload field 1146 includes
application data conveyed in the message. The length of the
Application Payload field 1146 may be determined from the
Payload Length field 1142, when present. If the Payload
Length field 1142 is not present, the length of the Application
Payload field 1146 may be determined by subtracting the
length of all other fields from the overall length of the mes-
sage and/or data values included within the Application Pay-
load 1146 (e.g., TLV).

An embodiment of the Application Payload field 1146 is
illustrated in FIG. 21. The Application Payload field 1146
includes an APVersion field 1170. In some embodiments, the
APVersion field 1170 includes eight bits that indicate what
version of fabric software is supported by the sending device.
The Application Payload field 1146 also includes a Message
Type field 1172. The Message Type field 1172 may include

US 9,326,307 B2

37

eight bits that correspond to a message operation code that
indicates the type of message being sent within a profile. For
example, in a software update profile, a 0x00 may indicate
that the message being sent is an image announce. The Appli-
cation Payload field 1146 further includes an Exchange Id
field 1174 that includes sixteen bits that corresponds to an
exchange identifier that is unique to the sending node for the
transaction.

In addition, the Application Payload field 1146 includes a
Profile Id field 1176. The Profile Id 1176 indicates a “theme of
discussion” used to indicate what type of communication
occurs in the message. The Profile Id 1176 may correspond to
one or more profiles that a device may be capable of commu-
nicating. For example, the Profile Id 1176 may indicate that
the message relates to a core profile, a software update profile,
a status update profile, a data management profile, a climate
and comfort profile, a security profile, a safety profile, and/or
other suitable profile types. Each device on the fabric may
include a list of profiles which are relevant to the device and
in which the device is capable of “participating in the discus-
sion.” For example, many devices in a fabric may include the
core profile, the software update profile, the status update
profile, and the data management profile, but only some
devices would include the climate and comfort profile. The
APVersion field 1170, Message Type field 1172, the
Exchange 1d field, the Profile Id field 1176, and the Profile-
Specific Header field 1176, if present, may be referred to in
combination as the “Application Header.”

In some embodiments, an indication of the Profile 1d via
the Profile Id field 1176 may provide sufficient information to
provide a schema for data transmitted for the profile. How-
ever, in some embodiments, additional information may be
used to determine further guidance for decoding the Applica-
tion Payload field 1146. In such embodiments, the Applica-
tion Payload field 1146 may include a Profile-Specific Header
field 1178. Some profiles may not use the Profile-Specific
Header field 1178 thereby enabling the Application Payload
field 1146 to omit the Profile-Specific Header field 1178.
Upon determination of a schema from the Profile Id field 1176
and/or the Profile-Specific Header field 1178, data may be
encoded/decoded in the Application Payload sub-field 1180.
The Application Payload sub-field 1180 includes the core
application data to be transmitted between devices and/or
services to be stored, rebroadcast, and/or acted upon by the
receiving device/service.

x. Message Integrity Check

Returning to FIG. 18, in some embodiments, the GMP
1128 may also include a Message Integrity Check (MIC) field
1148. The MIC field 1148, when present, includes a variable
length of bytes of data containing a MIC for the message. The
length and byte order of the field depends upon the integrity
check algorithm in use. For example, if the message is
checked for message integrity using HMAC-SHA-1, the MIC
field 1148 includes twenty bytes in big-endian order. Further-
more, the presence of the MIC field 1148 may be determined
by whether the Encryption Type field 1162 of the Message
Header 1132 includes any value other than 0x0.

xi. Padding

The GMP 1128 may also include a Padding field 1150. The
Padding field 1150, when present, includes a sequence of
bytes representing a cryptographic padding added to the mes-
sage to make the encrypted portion of the message evenly
divisible by the encryption block size. The presence of the
Padding field 1150 may be determined by whether the type of
encryption algorithm (e.g., block ciphers in cipher-block
chaining mode) indicated by the Encryption Type field 1162
in the Message Header 1132 uses cryptographic padding.

10

15

20

25

30

35

40

45

50

55

60

65

38

xii. Encryption

The Application Payload field 1146, the MIC field 1148,
and the Padding field 1150 together form an Encryption block
1152. The Encryption block 1152 includes the portions of the
message that are encrypted when the the Encryption Type
field 1162 in the Message Header 1132 is any value other than
0x0.

xiii. Message Signature

The GMP 1128 may also include a Message Signature field
1154. The Message Signature field 1154, when present,
includes a sequence of bytes of variable length that contains a
cryptographic signature of the message. The length and the
contents of the Message Signature field may be determined
according to the type of signature algorithm in use and indi-
cated by the Signature Type field 1164 of the Message Header
1132. For example, if ECDSA using the Prime256v1 ellipti-
cal curve parameters is the algorithm in use, the Message
Signature field 1154 may include two thirty-two bit integers
encoded in little-endian order.

Profiles and Protocols

As discussed above, one or more schemas of information
may be selected upon desired general discussion type for the
message. A profile may consist of one or more schemas. For
example, one set of schemas of information may be used to
encode/decode data in the Application Payload sub-field
1180 when one profile is indicated in the Profile Id field 1176
of'the Application Payload 1146. However, a different set of
schemas may be used to encode/decode data in the Applica-
tion Payload sub-field 1180 when a different profile is indi-
cated in the Profile Id field 1176 of the Application Payload
1146.

Additionally, in certain embodiments, each device may
include a set of methods used to process profiles. For
example, a core protocol may include the following profiles:
GetProfiles, GetSchema, GetSchemas, GetProperty, Get-
Properties, SetProperty, SetProperties, RemoveProperty,
RemoveProperties, RequestEcho, NotifyPropertyChanged,
and/or NotifyPropertiesChanged. The Get Profiles method
may return an array of profiles supported by a queried node.
The GetSchema and GetSchemas methods may respectively
return one or all schemas for a specific profile. GetProperty
and GetProperties may respectively return a value or all value
pairs for a profile schema. SetProperty and SetProperties may
respectively set single or multiple values for a profile schema.
RemoveProperty and RemoveProperties may respectively
attempt to remove a single or multiple values from a profile
schema. RequestEcho may send an arbitrary data payload to
a specified node which the node returns unmodified. Noti-
fyPropertyChange and NotifyPropertiesChanged may
respectively issue a notification if a single/multiple value
pairs have changed for a profile schema.

To aid in understanding profiles and schemas, a non-exclu-
sive list of profiles and schemas are provided below for illus-
trative purposes.

A. Status Reporting

A status reporting schema is presented as the status report-
ing frame 1182 in FIG. 22. The status reporting schema may
be a separate profile or may be included in one or more
profiles (e.g., a core profile). In certain embodiments, the
status reporting frame 1182 includes a profile field 1184, a
status code field 1186, a next status field 1188, and may
include an additional status info field 1190.

i. Profile Field

In some embodiments, the profile field 1184 includes four
bytes of data that defines the profile under which the infor-
mation in the present status report is to be interpreted. An
embodiment of the profile field 1184 is illustrated in FIG. 23

US 9,326,307 B2

39

with two sub-fields. In the illustrated embodiment, the profile
field 1184 includes a profile Id sub-field 1192 that includes
sixteen bits that corresponds to a vendor-specific identifier for
the profile under which the value of the status code field 1186
is defined. The profile field 1184 may also includes a vendor
1d sub-field 1194 that includes sixteen bits that identifies a
vendor providing the profile identified in the profile Id sub-
field 1192.

ii. Status Code

In certain embodiments, the status code field 1186 includes
sixteen bits that encode the status that is being reported. The
values in the status code field 1186 are interpreted in relation
to values encoded in the vendor Id sub-field 1192 and the
profile Id sub-field 1194 provided in the profile field 1184.

5

10

40

update protocol, a software image may be provided to the
profile client in a format known to the client. The subsequent
processing of the software image may be generic, device-
specific, or vendor-specific and determined by the software
update protocol and the devices.

i. General Application Headers for the Application Payload

In order to be recognized and handled properly, software
update profile frames may be identified within the Applica-
tion Payload field 1146 of the GMP 1128. In some embodi-
ments, all software update profile frames may use a common
Profile 1d 1176, such as 0x0000000C. Additionally, software
update profile frames may include a Message Type field 1172
that indicates additional information and may chosen accord-
ing to Table 9 below and the type of message being sent.

Additionally, in some embodiments, the status code space 15
may be divided into four groups, as indicated in Table 8 TABLE 9
below.
Software update profile message types
TABLE 8 Type Message
20
Status Code Range Table 0x00 image announce
0x01 image query
Range Name Description 0x02 image query response
0x03 download notify
0x0000 . .. 0x0010 success A request was successfully processed. 0x04 notify response
0x0011 ... 0x0020 client An error has or may have occurred on 55 0x05 update notify
error the client-side of a client/server ex- 0x06 . . . Oxff reserved
change. For example, the client has
made a badly-formed request. . .
0x0021 ... 0x0030 server An error has or may have occurred on Additionally, as described below, the software update
error ﬂf server side Ofaldlzllwser"er e sequence may be initiated by a server sending the update as an
;aiﬁfiéiig :::’:?lpci’emerz;v:srt ¥ 30 image announce or a client receiving the update as an image
an operating system etror. query. In either embodiment, an Exchange Id 1174 from the
0x0031...0x0040 continue/ Additional processing will be used, initiating event is used for all messages used in relation to the
redirect such as redirection, to complete a software update.

particular exchange, but no errors yet.

Although Table 8 identifies general status code ranges that
may be used separately assigned and used for each specific
profile Id, in some embodiments, some status codes may be
common to each of the profiles. For example, these profiles
may be identified using a common profile (e.g., core profile)
identifier, such as 0x00000000.

iii. Next Status

In some embodiments, the next status code field 1188
includes eight bits. The next status code field 1188 indicates
whether there is following status information after the cur-
rently reported status. If following status information is to be
included, the next status code field 1188 indicates what type
of status information is to be included. In some embodiments,
the next status code field 1188 may always be included,
thereby potentially increasing the size of the message. How-
ever, by providing an opportunity to chain status information
together, the potential for overall reduction of data sent may
be reduced. If the next status field 1186 is 0x00, no following
status information field 1190 is included. However, non-zero
values may indicate that data may be included and indicate
the form in which the data is included (e.g., in a TLV packet).

iv. Additional Status Info

When the next status code field 1188 is non-zero, the addi-
tional status info field 1190 is included in the message. If
present, the status item field may contain status in a form that
may be determined by the value of the preceding status type
field (e.g., TLV format)

B. Software Update

The software update profile or protocol is a set of schemas
and a client/server protocol that enables clients to be made
aware of or seek information about the presence of software
that they may download and install. Using the software

35

40

45

50

55

60

65

ii. Protocol Sequence

FIG. 24 illustrates an embodiment of a protocol sequence
1196 for a software update between a software update client
1198 and a software update server 1200. In certain embodi-
ments, any device in the fabric may be the software update
client 1198 or the software update server 1200. Certain
embodiments of the protocol sequence 1196 may include
additional steps, such as those illustrated as dashed lines, that
may be omitted in some software update transmissions.

1. Service Discovery

In some embodiments, the protocol sequence 1196 begins
with a software update profile server announcing a presence
of the update. However, in other embodiments, such as the
illustrated embodiment, the protocol sequence 1196 begins
with a service discovery 1202, as discussed above.

2. Image Announce

In some embodiments, an image announce message 1204
may be multicast or unicast by the software update server
1200. The image announce message 1204 informs devices in
the fabric that the server 1200 has a software update to offer.
If the update is applicable to the client 1198, upon receipt of
the image announce message 1204, the software update client
1198 responds with an image query message 1206. In certain
embodiments, the image announce message 1204 may not be
included in the protocol sequence 1196. Instead, in such
embodiments, the software update client 1198 may use a
polling schedule to determine when to send the image query
message 1206.

3. Image Query

In certain embodiments, the image query message 1206
may be unicast from the software update client 1198 either in
response to an image announce message 1204 or according to
a polling schedule, as discussed above. The image query
message 1206 includes information from the client 1198

US 9,326,307 B2

41

about itself. An embodiment of a frame of the image query
message 1206 is illustrated in FIG. 25. As illustrated in FIG.
25, certain embodiments of the image query message 1206
may include a frame control field 1218, a product specifica-
tion field 1220, a vendor specific data field 1222, a version
specification field 1224, a locale specification field 1226, an
integrity type supported field 1228, and an update schemes
supported field 1230.

a. Frame Control

The frame control field 1218 includes 1 byte and indicates
various information about the image query message 1204. An
example of the frame control field 128 is illustrated in FIG.
26. As illustrated, the frame control field 1218 may include
three sub-fields: vendor specific flag 1232, locale specifica-
tion flag 1234, and a reserved field S3. The vendor specific
flag 1232 indicates whether the vendor specific data field
1222 is included in the message image query message. For
example, when the vendor specific flag 1232 is 0 no vendor
specific data field 1222 may be present in the image query
message, but when the vendor specific flag 1232 is 1 the
vendor specific data field 1222 may be present in the image
query message. Similarly, a 1 value in the locale specification
flag 1234 indicates that a locale specification field 1226 is
present in the image query message, and a 0 value indicates
that the locale specification field 1226 in not present in the
image query message.

b. Product Specification

The product specification field 1220 is a six byte field. An
embodiment of the product specification field 1220 is illus-
trated in FIG. 27. As illustrated, the product specification field
1220 may include three sub-fields: a vendor Id field 1236, a
product Id field 1238, and a product revision field 1240. The
vendor Id field 1236 includes sixteen bits that indicate a
vendor for the software update client 1198. The product Id
field 1238 includes sixteen bits that indicate the device prod-
uct that is sending the image query message 1206 as the
software update client 1198. The product revision field 1240
includes sixteen bits that indicate a revision attribute of the
software update client 1198.

¢. Vendor Specific Data

The vendor specific data field 1222, when present in the
image query message 1206, has a length of a variable number
of'bytes. The presence of the vendor specific data field 1222
may be determined from the vendor specific flag 1232 of the
frame control field 1218. When present, the vendor specific
data field 1222 encodes vendor specific information about the
software update client 1198 in a TLV format, as described
above.

d. Version Specification

An embodiment of the version specification field 1224 is
illustrated in FIG. 28. The version specification field 1224
includes a variable number of bytes sub-divided into two
sub-fields: a version length field 1242 and a version string
field 1244. The version length field 1242 includes eight bits
that indicate a length of the version string field 1244. The
version string field 1244 is variable in length and determined
by the version length field 1242. In some embodiments, the
version string field 1244 may be capped at 255 UTF-8 char-
acters in length. The value encoded in the version string field
1244 indicates a software version attribute for the software
update client 1198.

e. Locale Specification

In certain embodiments, the locale specification field 1226
may be included in the image query message 1206 when the
locale specification flag 1234 of the frame control 1218 is 1.
An embodiment of the locale specification field 1226 is illus-
trated in FIG. 29. The illustrated embodiment of the locale

5

10

15

20

25

30

35

40

45

50

55

60

65

42

specification field 1226 includes a variable number of bytes
divided into two sub-fields: a locale string length field 1246
and a locale string field 1248. The locale string length field
1246 includes eight bits that indicate a length of the locale
string field 1248. The locale string field 1248 of the locale
specification field 1226 may be variable in length and contain
a string of UTF-8 characters encoding a local description
based on Portable Operating System Interface (POSIX)
locale codes. The standard format for POSIX locale codes is
[language| _territory][.codeset]|[@modifier]] For example,
the POSIX representation for Australian English is en_A-
U.UTES.

f. Integrity Types Supported

An embodiment of the integrity types field 1228 is illus-
trated in FIG. 30. The integrity types supported field 1228
includes two to four bytes of data divided into two sub-fields:
a type list length field 1250 and an integrity type list field
1252. The type list length field 1250 includes eight bits that
indicate the length in bytes of the integrity type list field 1252.
The integrity type list field 1252 indicates the value of the
software update integrity type attribute of the software update
client 1198. In some embodiments, the integrity type may be
derived from Table 10 below.

TABLE 10

Example integrity types

Value Integrity Type
0x00 SHA-160
0x01 SHA-256
0x02 SHA-512

The integrity type list field 1252 may contain at least one
element from Table 10 or other additional values not
included.

g. Update Schemes Supported

An embodiment of the schemes supported field 1230 is
illustrated in FIG. 31. The schemes supported field 1230
includes a variable number of bytes divided into two sub-
fields: a scheme list length field 1254 and an update scheme
list field 1256. The scheme list length field 1254 includes
eight bits that indicate a length of the update scheme list field
in bytes. The update scheme list field 1256 of the update
schemes supported field 1222 is variable in length determined
by the scheme list length field 1254. The update scheme list
field 1256 represents an update schemes attributes of the
software update profile of the software update client 1198. An
embodiment of example values is shown in Table 11 below.

TABLE 11

Example update schemes

Value Update Scheme

0x00 HTTP

0x01 HTTPS

0x02 SFTP

0x03 Fabric-specific File Transfer Protocol

(e.g., Bulk Data Transfer discussed
below)

Upon receiving the image query message 1206, the software
update server 1200 uses the transmitted information to deter-
mine whether the software update server 1200 has an update
for the software update client 1198 and how best to deliver the
update to the software update client 1198.

US 9,326,307 B2

43

4. Image Query Response

Returning to FIG. 24, after the software update server 1200
receives the image query message 1206 from the software
update client 1198, the software update server 1200 responds
with an image query response 1208. The image query
response 1208 includes either information detailing why an
update image is not available to the software update client
1198 or information about the available image update to
enable to software update client 1198 to download and install
the update.

An embodiment of a frame of the image query response
1208 is illustrated in FIG. 32. As illustrated, the image query
response 1208 includes five possible sub-fields: a query status
field 1258, a uniform resource identifier (URI) field 1260, an
integrity specification field 1262, an update scheme field
1264, and an update options field 1266.

a. Query Status

The query status field 1258 includes a variable number of
bytes and contains status reporting formatted data, as dis-
cussed above in reference to status reporting. For example,
the query status field 1258 may include image query response
status codes, such as those illustrated below in Table 12.

10

44
d. Update Scheme

The update scheme field 1264 includes eight bits and is
present when the query status field 1258 indicates that an
update is available from the software update server 1198 to
the software update client 1198. If present, the update scheme
field 1264 indicates a scheme attribute for the software update
image being presented to the software update server 1198.

e. Update Options

The update options field 1266 includes eight bits and is
present when the query status field 1258 indicates that an
update is available from the software update server 1198 to
the software update client 1198. The update options field
1266 may be sub-divided as illustrated in FIG. 35. As illus-
trated, the update options field 1266 includes four sub-fields:
an update priority field 1276, an update condition field 1278,
a report status flag 1280, and a reserved field 1282. In some
embodiments, the update priority field 1276 includes two
bits. The update priority field 1276 indicates a priority
attribute of the update and may be determined using values
such as those illustrated in Table 13 below.

TABLE 13
TABLE 12 25 Example update priority values
Example image query response status codes Value Description
Profile Code Description 00 Normal - update during a period of low network traffic
01 Critical - updats ickl ibl
0x00000000 0x0000 The server has processed the image query mes- HHeaT - update a5 quieky as possib'e
sage 1206 and has an update for the software 30
update client 1198. .))
0x0000000C 0x0001 The server has processed the image query mes- The update condition field 1278 includes three bits that may
sage 1206, but the server does not have an be used to determine conditional factors to determine when or
update for the software update client 1198. if to update. For example, values in the update condition field
0x00000000 0x0010 The server could not process the request be- .
; 1278 may be decoded using the Table 14 below.
cause of improper form for the request. 35
0x00000000 0x0020 The server could not process the request due
to an internal error TABLE 14
Example update condition
b. URI

The URI field 1260 includes a variable number of bytes.
The presence of the URI field 1260 may be determined by the
query status field 1258. If the query status field 1258 indicates
that an update is available, the URI field 1260 may be
included. An embodiment of the URI field 1260 is illustrated
in FIG. 33. The URI field 1260 includes two sub-fields: a URI
length field 1268 and a URI string field 1270. The URI length
field 1268 includes sixteen bits that indicates the length of the
URI string field 1270 in UTF-8 characters. The URI string
field 1270 and indicates the URI attribute of the software
image update being presented, such that the software update
client 1198 may be able to locate, download, and install a
software image update, when present.

c. Integrity Specification

The integrity specification field 1262 may variable in
length and present when the query status field 1258 indicates
that an update is available from the software update server
1198 to the software update client 1198. An embodiment of
the integrity specification field 1262 is illustrated in FI1G. 34.
As illustrated, the integrity specification field 1262 includes
two sub-fields: an integrity type field 1272 and an integrity
value field 1274. The integrity type field 1272 includes eight
bits that indicates an integrity type attribute for the software
image update and may be populated using a list similar to that
illustrated in Table 10 above. The integrity value field 1274
includes the integrity value that is used to verify that the
image update message has maintained integrity during the
transmission.

40

45

55

Value Decription

0 Update without conditions

1 Update if the version of the software running on the update
client software does not match the update version.

2 Update if the version of the software running on the update
client software is older than the update version.

3 Update if the user opts into an update with a user interface

The report status flag 1280 is a single bit that indicates
whether the software update client 1198 should respond with
adownload notify message 1210. If the report status flag 1280
is set to 1 the software update server 1198 is requesting a
download notify message 1210 to be sent after the software
update is downloaded by the software update client 1200.

If the image query response 1208 indicates that an update
is available. The software update client 1198 downloads 1210
the update using the information included in the image query
response 1208 at atime indicated in the image query response
1208.

5. Download Notify

After the update download 1210 is successtully completed
or failed and the report status flag 1280 value is 1, the software
update client 1198 may respond with the download notify
message 1212. The download notify message 1210 may be
formatted in accordance with the status reporting format dis-
cussed above. An example of status codes used in the down-
load notify message 1212 is illustrated in Table 15 below.

US 9,326,307 B2

45
TABLE 15

Example download notify status codes

Profile Code Description

0x00000000 0x0000 The download has been completed,
and integrity verified

0x0000000C 0x0020 The download could not be
completed due to faulty download
instructions.

0x0000000C 0x0021 The image query response
message 1208 appears proper, but
the download or integrity
verification failed.

0x0000000C 0x0022 The integrity of the download could

not be verified.

In addition to the status reporting described above, the down-
load notify message 1208 may include additional status infor-
mation that may be relevant to the download and/or failure to
download.

6. Notify Response

The software update server 1200 may respond with a notify
response message 1214 in response to the download notify
message 1212 or an update notify message 1216. The notify
response message 1214 may include the status reporting for-
mat, as described above. For example, the notify response
message 1214 may include status codes as enumerated in
Table 16 below.

TABLE 16

Example notify response status codes

Profile Code Description

0x00000000 0x0030 Continue - the notification is acknowledged, but
the update has not completed, such as download
notify message 1214 received but update notify
message 1216 has not.

0x00000000 0x0000 Success- the notification is acknowledged, and
the update has completed.

0x0000000C 0x0023 Abort - the notification is acknowledged, but the
server cannot continue the update.

0x0000000C 0x0031 Retry query - the notification is acknowledged,

and the software update client 1198 is directed
to retry the update by submitting another image
query message 1206.

In addition to the status reporting described above, the notify
response message 1214 may include additional status infor-
mation that may be relevant to the download, update, and/or
failure to download/update the software update.

7. Update Notify

After the update is successfully completed or failed and the
report status flag 1280 value is 1, the software update client
1198 may respond with the update notify message 1216. The
update notify message 1216 may use the status reporting
format described above. For example, the update notify mes-
sage 1216 may include status codes as enumerated in Table 17
below.

TABLE 17
Example update notify status codes
Profile Code Description
0x00000000 0x0000 Success - the update has been completed.
0x0000000C 0x0010 Client error - the update failed due to a

problem in the software update client 1198.

10

15

20

25

30

35

40

45

50

55

60

65

46

In addition to the status reporting described above, the update
notify message 1216 may include additional status informa-
tion that may be relevant to the update and/or failure to
update.

C. Data Management Protocol

Data management may be included in a common profile
(e.g., core profile) used in various electronic devices within
the fabric or may be designated as a separate profile. In either
situation, the device management protocol (DMP) may be
used for nodes to browse, share, and/or update node-resident
information. A sequence 1284 used in the DMP is illustrated
in FIG. 36. The sequence 1284 illustrates a viewing node
1286 that requests to view and/or change resident data of a
viewed node 1288. Additionally, the viewing node 1286 may
request to view the resident data using one of several viewing
options, such as a snapshot request, a watching request that
the viewing persists over a period of time, or other suitable
viewing type. Each message follows the format for the Appli-
cation Payload 1146 described in reference to FIG. 21. For
example, each message contains a profile Id 1176 that corre-
sponds to the data management profile and/or the relevant
core profile, such as 0x235A0000. Each message also con-
tains a message type 1172. The message type 1172 may be
used to determine various factors relating the conversation,
such as viewing type for the view. For example, in some
embodiments, the message type field 1172 may be encoded/
decoded according to Table 18 below.

TABLE 18

Example software update profile message types

Type Message

0x00 snapshot request

0x01 watch request

0x02 periodic update request
0x03 refresh update

0x04 cancel view update
0x05 view response

0x06 explicit update request
0x07 view update request
0x08 update response

i. View Request

Although a view request message 1290 requests to view
node-resident data, the type of request may be determined by
the message type field 1172, as discussed above. Accordingly
each request type may include a different view request frame.

1. Snapshot Request

A snapshot request may be sent by the viewing node 1286
when the viewing node 1286 desires an instantaneous view
into the node-resident data on the viewed node 1288 without
requesting future updates. An embodiment of a snapshot
request frame 1292 is illustrated in FIG. 37.

As illustrated in FIG. 37, the snapshot request frame 1292
may be variable in length and include three fields: a view
handle field 1294, a path length list field 1296, and a path list
field 1298. The view handle field 1294 may include two bits
that provide a “handle” to identify the requested view. In
some embodiments, the view handle field 1294 is populated
using a random 16-bit number or a 16-bit sequence number
along with a uniqueness check performed on the viewing
node 1286 when the request is formed. The path list length
field 1296 includes two bytes that indicate a length of the path
list field 1298. The path list field 1298 is variable in length and
indicated by the value of the path list length field 1296. The
value of the path list field 1298 indicates a schema path for
nodes.

US 9,326,307 B2

47

A schema path is a compact description for a data item or
container that is part of a schema resident on the nodes. For
example, FIG. 38 provides an example of a profile schema
1300. In the illustrated profile schema 1300, a path to data
item 1302 may be written as “Foo:bicycle:mountain” in a
binary format. The binary format of the path may be repre-
sented as a profile binary format 1304, as depicted in FIG. 39.
The profile binary format 1304 includes two sub-fields: a
profile identifier field 1306 and a TLV data field 1308. The
profile identifier field 1306 identifies which profile is being
referenced (e.g., Foo profile). The TLV data field 1308 path
information. As previously discussed TLV data includes a tag
field that includes information about the enclosed data. Tag
field values used to refer to the Foo profile of FIG. 38 may be
similar to those values listed in Table 19.

TABLE 19

Example tag values for the Foo profile
Name Tag
animal 0x4301
fish 0x4302
fowl 0x4303
medium 0x4304
size 0x4305
bicycle 0x4306
road 0x4307
mountain 0x4308
track 0x4309
of gears 0x430A
weight 0x430B

Using Table 19 and the Foo profile of FIG. 38, a binary string
in TLV format representing the path “Foo:bicycle:mountain”
may be represented as shown in Table 20 below.

TABLE 20

Example binary tag list for a schema path

Profile ID Tag and Length (TL) “bicycle” “mountain”

CD:AB:00:00 0D:02 06:43 08:43

If the viewing node 1286 desires to receive an entire data set
defined in a profile schema (e.g. Foo profile schema of FIG.
39), the view request message 1290 may request a “nil” item
(e.g., 0x0DO00 TL and an empty length referring to the con-
tainer.

2. Watch Request

If the viewing node 1286 desires more than a snapshot, the
viewing node 1286 may request a watch request. A watch
request asks the viewed node 1288 to send updates when
changes are made to the data of interest in viewed node 1288
so that viewing node 1286 can keep a synchronized list of the
data. The watch request frame may have a different format
than the snapshot request of FIG. 37. An embodiment of a
watch request frame 1310 is illustrated in FIG. 40. The watch
request frame 1310 includes four fields: a view handle field
1312, a path list length field 1314, a path list field 1316, and
a change count field 1318. The view handle field 1312, the
path list length field 1314, and the path list field may be
respectively formatted similar to the view handle field 1294,
the path list length field 1296, and the path list field 1298 of
the snapshot request of FIG. 37. The additional field, the
change count field 1318, indicates a threshold of a number of
changes to the requested data at which an update is sent to the
viewing node 1286. In some embodiments, if the value of the

10

15

20

25

30

35

40

45

50

55

60

48

change count field 1318 is 0, the viewed node 1288 may
determine when to send an update on its own. If the value of
the change count field 1318 is nonzero then after a number of
changes equal to the value, then an update is sent to the
viewing node 1286.

3. Periodic Update Request

A third type of view may also be requested by the viewing
node 1286. This third type of view is referred to as a periodic
update. A periodic update includes a snapshot view as well as
periodic updates. As can be understood, a periodic update
request may be similar to the snapshot request with additional
information determining the update period. For example, an
embodiment of a periodic update request frame 1320 is
depicted in FIG. 41. The periodic update request frame 1320
includes four fields: a view handle field 1322, a path list
length field 1324, a path list field 1326, and an update period
field 1328. The view handle field 1322, the path list length
field 1324, and the path list field 1326 may be formatted
similar to their respective fields in the snapshot request frame
1292. The update period field 1328 is four bytes in length and
contains a value that corresponds to a period of time to lapse
between updates in a relevant unit of time (e.g., seconds).

4. Refresh Request

When the viewing node 1286 desires to receive an updated
snapshot, the viewing node 1286 may send a view request
message 1290 in the form of a refresh request frame 1330 as
illustrated in FIG. 42. The refresh request frame 1330 essen-
tially resends a snapshot view handle field (e.g., view handle
field 1294) from a previous snapshot request that the viewed
node 1288 can recognize as a previous request using the view
handle value in the refresh request frame 1330.

5. Cancel View Request

When the viewing node 1286 desires to cancel an ongoing
view (e.g., periodic update or watch view), the viewing node
1286 may send a view request message 1290 in the form of a
cancel view request frame 1332 as illustrated in FIG. 43. The
cancel view request frame 1332 essentially resends a view
handle field from a previous periodic update or watch view
(e.g., view handle fields 1310, or 1322) from a previous
request that the viewed node 1288 can recognize as a previous
request using the view handle value in the refresh request
frame 1330 and to cancel a currently periodic update or watch
view.

ii. View Response

Returning to FIG. 36, after the viewed node 1288 receives
aview request message 1290, the viewed node 1288 responds
with a view response message 1334. An example of a view
response message frame 1336 is illustrated in FIG. 44. The
view response message frame 1336 includes three fields: a
view handle field 1338, a view request status field 1240, and
a data item list 1242. The view handle field 1338 may be
formatted similar to any of the above referenced view handle
fields 1338. Additionally, the view handle field 1338 contains
a value that matches a respective view handle field from the
view request message 1290 to which the view response mes-
sage 1334 is responding. The view request status field 1340 is
a variable length field that indicates a status of the view
request and may be formatted according to the status updating
format discussed above. The data item list field 1342 is a
variable length field that is present when the view request
status field 1340 indicates that the view request was success-
ful. When present, the data item list field 1342 contains an
ordered list of requested data corresponding to the path list of
the view request message 1290. Moreover, the data in the data
item list field 1342 may be encoded in a TLV format, as
discussed above.

US 9,326,307 B2

49

iii. Update Request

As discussed above, in some embodiments, the viewed
node 1288 may send updates to the viewing node 1286. These
updates may be sent as an update request message 1344. The
update request message 1344 may include a specified format
dependent upon a type of update request. For example, an
update request may be an explicit update request or a view
update request field that may be identified by the Message 1d
1172.

1. Explicit Update Request

An explicit update request may be transmitted at any time
as aresult of a desire for information from another node in the
fabric 1000. An explicit update request may be formatted in
an update request frame 1346 illustrated in FIG. 45. The
illustrated update request frame 1346 includes four fields: an
update handle field 1348, a path list length field 1350, a path
list field 1352, and a data item list field 1354.

The update handle field 1348 includes two bytes that may
be populated with random or sequential numbers with
uniqueness checks to identify an update request or responses
to the request. The path list length field 1350 includes two
bytes that indicate a length of the path list field 1352. The path
list field 1352 is a variable length field that indicates a
sequence of paths, as described above. The data item list field
1354 may be formatted similar to the data item list field 1242.

2. View Update Request

A view update request message may be transmitted by a
node that has previously requested a view into a schema of
another node or a node that has established a view into its own
data on behalf of another node. An embodiment of a view
update request frame 1356 illustrated in FIG. 46. The view
update request frame 1356 includes four fields: an update
handle field 1358, a view handle field 1360, an update item
list length field 1362, and an update item list field 1364. The
update handle field 1358 may be composed using the format
discussed above in reference to the update handle field 1348.
The view handle field 1360 includes two bytes that identify
the view created by a relevant view request message 1290
having the same view handle. The update item list length field
1362 includes two bytes and indicates the number of update
items that are included in the update item list field 1364.

The update item list field 1364 includes a variable number
of bytes and lists the data items constituting the updated
values. Each updated item list may include multiple update
items. The individual update items are formatted accordingly
to the update item frame 1366 illustrated in FIG. 47. Each
update item frame 1366 includes three sub-fields: an item
index field 1368, an item timestamp field 1370, and a data
item field 1372. The item index field 1368 includes two bytes
that indicate the view under which the update is being
requested and the index in the path list of that view for the data
item field 1372.

The item timestamp field 1370 includes four bytes and
indicates the elapsed time (e.g., in seconds) from the change
until the update being communicated was made. If more than
one change has been made to the data item, the item times-
tamp field 1370 may indicate the most recent or the earliest
change. The data item field 1372 is a variable length field
encoded in TLV format that is to be received as the updated
information.

iv. Update Response

After an update is received, a node (e.g., viewing node
1286) may send an update response message 1374. The
update response message 1374 may be encoded using an
update response frame 1376 illustrated in FI1G. 48. The update
response frame 1376 includes two fields: an update handle
field 1378 and an update request status field 1380. The update

10

15

20

25

30

35

40

45

50

55

60

65

50

handle field 1378 corresponds to an update handle field value
of the update request message 1344 to which the update
response message 1374 is responding. The update request
status field 1380 reports a status of the update in accordance
with the status reporting format discussed above. Addition-
ally, a profile using the DMP (e.g., a core profile or a data
management profile) may include profile-specific codes, such
as those enumerated in Table 21 below.

TABLE 21
Example of status codes for a profile including the DMP
Name Value Description
success 0x0000 Request successfully processed
ill-formed request 0x0010 Received request was unparseable (e.g.,
missing fields, extra fields, etc.)
invalid path 0x0011 A path from the path list of the view or
update request did not match a node-
resident schema of the responding device.
unknown view 0x0012 The view handle in the update request did
handle not match a view on the receiving node.
illegal read 0x0013 The node making a request to read a
request particular data item does not have
permission to do so.
illegal write 0x0014 The node making the request to write a
request particular data item does not have

permission to do so.

internal server 0x0020 The server could not process the request
error because of an internal error.
out of memory 0x0021 The update request could not executed

because it would overrun the available
memory in the receiving device.

The request was successfully handled but
more action by the requesting device may
oceur.

continue 0x0030

D. Bulk Transfer

In some embodiments, it may be desirable to transfer bulk
data files (e.g., sensor data, logs, or update images) between
nodes/services in the fabric 1000. To enable transfer of bulk
data, a separate profile or protocol may be incorporated into
one or more profiles and made available to the nodes/services
in the nodes. The bulk data transfer protocol may model data
files as collections of data with metadata attachments. In
certain embodiments, the data may be opaque, but the meta-
data may be used to determine whether to proceed with a
requested file transfer.

Devices participating in a bulk transfer may be generally
divided according to the bulk transfer communication and
event creation. As illustrated in FIG. 49, each communication
1400 in a bulk transfer includes a sender 1402 that is a node/
service that sends the bulk data 1404 to a receiver 1406 thatis
a node/service that receives the bulk data 1404. In some
embodiments, the receiver may send status information 1408
to the sender 1402 indicating a status of the bulk transfer.
Additionally, a bulk transfer event may be initiated by either
the sender 1402 (e.g., upload) or the receiver 1406 (e.g.,
download) as the initiator. A node/service that responds to the
initiator may be referred to as the responder in the bulk data
transfer.

Bulk data transfer may occur using either synchronous or
asynchronous modes. The mode in which the data is trans-
ferred may be determined using a variety of factors, such as
the underlying protocol (e.g., UDP or TCP) on which the bulk
data is sent. In connectionless protocols (e.g., UDP), bulk
data may be transferred using a synchronous mode that allows
one of the nodes/services (“the driver”) to control a rate at
which the transfer proceeds. In certain embodiments, after
each message in a synchronous mode bulk data transfer, an
acknowledgment may be sent before sending the next mes-

US 9,326,307 B2

51

sage in the bulk data transfer. The driver may be the sender
1402 or the receiver 1406. In some embodiments, the driver
may toggle between an online state and an offline mode while
sending messages to advance the transfer when in the online
state. In bulk data transfers using connection-oriented proto-
cols (e.g., TCP), bulk data may be transferred using an asyn-
chronous mode that does not use an acknowledgment before
sending successive messages or a single driver.

Regardless of whether the bulk data transfer is performed
using a synchronous or asynchronous mode, a type of mes-
sage may be determined using a Message Type 1172 in the
Application Payload 1146 according the Profile Id 1176 in the
Application Payload. Table 22 includes an example of mes-
sage types that may be used in relation to a bulk data transfer
profile value in the Profile Id 1176.

TABLE 22

Examples of message types for bulk data transfer profiles

Message Type Message
0x01 SendInit
0x02 SendAccept
0x03 SendReject
0x04 Receivelnit
0x05 ReceiveAccept
0x06 ReceiveReject
0x07 BlockQuery
0x08 Block
0x09 BlockEOF
0x0A Ack
0x0B Block EOF
0x0C Error

i. SendlInit

An embodiment of a SendInit message 1420 is illustrated
in FIG. 50. The SendInit message 1420 may include seven
fields: a transfer control field 1422, a range control field 1424,
a file designator length field 1426, a proposed max block size
field 1428, a start offset field 1430, length field 1432, and a file
designator field 1434.

The transfer control field 1422 includes a byte of data
illustrated in FIG. 51. The transfer control field includes at
least four fields: an Asynch flag 1450, an RDrive flag 1452, an
SDrive flag 1454, and a version field 1456. The Asynch flag
1450 indicates whether the proposed transfer may be per-
formed using a synchronous or an asynchronous mode. The
RDrive flag 1452 and the SDrive flag 1454 each respectively
indicates whether the receiver 1406 is capable of transferring
data with the receiver 1402 or the sender 1408 driving a
synchronous mode transfer.

The range control field 1424 includes a byte of data such as
the range control field 1424 illustrated in FIG. 52. In the
illustrated embodiment, the range control field 1424 includes
at least three fields: a BigExtent flag 1470, a start offset flag
1472, and a definite length flag 1474. The definite length flag
1474 indicates whether the transfer has a definite length. The
definite length flag 1474 indicates whether the length field
1432 is present in the Sendlnit message 1420, and the Big-
Extent flag 1470 indicates a size for the length field 1432. For
example, in some embodiments, a value of 1 in the BigExtent
flag 1470 indicates that the length field 1432 is eight bytes.
Otherwise, the length field 1432 is four bytes, when present.
If the transfer has a definite length, the start offset flag 1472
indicates whether a start offset is present. If a start offset is
present, the BigExtent flag 1470 indicates a length for the
start offset field 1430. For example, in some embodiments, a
value of 1 in the BigExtent flag 1470 indicates that the start

10

15

20

25

30

35

40

45

50

55

60

65

52
offset field 1430 is eight bytes. Otherwise, the start offset field
1430 is four bytes, when present.

Returning to FIG. 50, the file designator length field 1426
includes two bytes that indicate a length of the file designator
field 1434. The file designator field 1434 which is a variable
length field dependent upon the file designator length field
1426. The max block size field 1428 proposes a maximum
size of block that may be transferred in a single transfer.

The start offset field 1430, when present, has a length
indicated by the BigExtent flag 1470. The value of the start
offset field 1430 indicates a location within the file to be
transferred from which the sender 1402 may start the transfer,
essentially allowing large file transfers to be segmented into
multiple bulk transfer sessions.

The length field 1432, when present, indicates a length of
the file to be transferred if the definite length field 1474
indicates that the file has a definite length. In some embodi-
ments, if the receiver 1402 receives a final block before the
length is achieved, the receiver may consider the transfer
failed and report an error as discussed below.

The file designator field 1434 is a variable length identifier
chosen by the sender 1402 to identify the file to be sent. In
some embodiments, the sender 1402 and the receiver 1406
may negotiate the identifier for the file prior to transmittal. In
other embodiments, the receiver 1406 may use metadata
along with the file designator field 1434 to determine whether
to accept the transfer and how to handle the data. The length
of'the file designator field 1434 may be determined from the
file designator length field 1426. In some embodiments, the
SendInit message 1420 may also include a metadata field
1480 of a variable length encoded in a TLV format. The
metadata field 1480 enables the initiator to send additional
information, such as application-specific information about
the file to be transferred. In some embodiments, the metadata
field 1480 may be used to avoid negotiating the file designator
field 1434 prior to the bulk data transfer.

ii. SendAccept

A send accept message is transmitted from the responder to
indicate the transfer mode chosen for the transfer. An embodi-
ment of a SendAccept message 1500 is presented in FIG. 53.
The SendAccept message 1500 includes a transfer control
field 1502 similar to the transfer control field 1422 of the
SendInit message 1420. However, in some embodiments,
only the RDrive flag 1452 or the SDrive 1454 may have a
nonzero value in the transfer control field 1502 to identify the
sender 1402 or the receiver 1406 as the driver of a synchro-
nous mode transfer. The SendAccept message 1500 also
includes a max block size field 1504 that indicates a maxi-
mum block size for the transfer. The block size field 1504 may
be equal to the value of the max block field 1428 of the
SendInit message 1420, but the value of the max block size
field 1504 may be smaller than the value proposed in the max
block field 1428. Finally, the Send Accept message 1500 may
include a metadata field 1506 that indicates information that
the receiver 1506 may pass to the sender 1402 about the
transfer.

iii. SendReject

When the receiver 1206 rejects a transfer after a SendInit
message, the receiver 1206 may send a SendReject message
that indicates that one or more issues exist regarding the bulk
data transfer between the sender 1202 and the receiver 1206.
The send reject me